Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(n + 1)3 = (n + 1)2
=> (n + 1)3 - (n + 1)2 = 0
=> (n + 1)2.(n + 1 - 1) = 0
=> (n + 1)2.n = 0
=> \(\orbr{\begin{cases}\left(n+1\right)^2=0\\n=0\end{cases}}\)=> \(\orbr{\begin{cases}n+1=0\\n=0\end{cases}}\)=> \(\orbr{\begin{cases}n=-1\\n=0\end{cases}}\)
Mà \(n\in N\Rightarrow n=0\)
Lời giải:
a.
$2n+7\vdots n+2$
$\Rightarrow 2(n+2)+3\vdots n+2$
$\Rightarrow 3\vdots n+2$
$\Rightarrow n+2\in\left\{1;3\right\}$ (do $n+2>0$ với $n$ là số
tự nhiên)
$\Rightarrow n\in\left\{-1;1\right\}$
Vì $n$ là số tự nhiên nên $n=1$
b.
$4n-5\vdots 2n-1$
$\Rightarrow 2(2n-1)-3\vdots 2n-1$
$\Rightarrow 3\vdots 2n-1$
$\Rightarrow 2n-1\in\left\{1;-1;3;-3\right\}$
$\Rightarrow n\in\left\{1;0; 2; -1\right\}$
Do $n$ là số tự nhiên nên $n\in\left\{1;0;2\right\}$
\(a,\Leftrightarrow\dfrac{\left(n+15\right)\left(15-n+1\right)}{2}=0\\ \Leftrightarrow\left[{}\begin{matrix}n=-15\\n=14\left(l\right)\end{matrix}\right.\Leftrightarrow n=-15\\ b,\Leftrightarrow\dfrac{\left(35+n\right)\left(35-n+1\right)}{2}=0\\ \Leftrightarrow\left[{}\begin{matrix}n=-35\left(n\right)\\n=34\left(l\right)\end{matrix}\right.\Leftrightarrow n=-35\)
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
a) 15 ⋮ 1 , 3 , 5, 15
Vậy n = 0 , 2 , 4 , 14
a) \(\Rightarrow\left(n+1\right)\inƯ\left(15\right)=\left\{-15;-5;-3;-1;1;3;5;15\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;2;4;14\right\}\)
b) \(\Rightarrow\left(n+1\right)+2⋮\left(n+1\right)\)
Do \(n\in N\Rightarrow\left(n+1\right)\inƯ\left(2\right)=\left\{1;2\right\}\Rightarrow n\in\left\{0;1\right\}\)