Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(x^3=\left(7+\sqrt{\frac{49}{8}}\right)+\left(7-\sqrt{\frac{49}{8}}\right)+3x\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}\)
\(=14+3x\cdot\frac{7}{2}=14+\frac{21x}{2}\)
\(\Leftrightarrow x^3-\frac{21}{2}x-14=0\)
Ta có: \(f\left(x\right)=\left(2x^3-21-29\right)^{2019}=\left[2\left(x^3-\frac{21}{2}x-14\right)-1\right]^{2019}=\left(-1\right)^{2019}=-1\)
2, ta có: \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (bạn tự cm)
Áp dụng công thức trên ta được n=2016
3, \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\frac{\sqrt[3]{\left(\sqrt{5}\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}\)
\(=\frac{\sqrt[3]{\left(\sqrt{5}-2\right)^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{5-4}{3}=\frac{1}{3}\)
Thay x=1/3 vào A ta được;
\(A=3x^3+8x^2+2=3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2=3\)
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\ge2014\)
\(\Rightarrow\frac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+...+\frac{\sqrt{n}-\sqrt{n+1}}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}\)
\(=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{n}-\sqrt{n+1}}{n-\left(n+1\right)}\)
\(=\frac{1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{n}-\sqrt{n+1}}{-1}\)
\(=\frac{1-\sqrt{n+1}}{-1}=\sqrt{n+1}-1\ge2014\)
\(\Leftrightarrow\sqrt{n+1}\ge2015\)
\(\Leftrightarrow n+1=2015^2=4060225\)
\(V~~n=4060224\)
Xét \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\) = \(\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n-1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)=\left(\frac{\sqrt{n}}{\sqrt{n+1}}+1\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\) < \(2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Vậy \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+.....+\frac{1}{\left(n+1\right)\sqrt{n}}<2\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\) = \(2\left(1-\frac{1}{\sqrt{n+1}}\right)<2\) (đpcm)
1) Ta có: \(2020^2=\left(2019+1\right)^2=2019^2+2.2019+1.\)
\(\Rightarrow1+2019^2=2020^2-2.2019\)
\(\Rightarrow M=\sqrt{1+2019^2+\frac{2019^2}{2020^2}}+\frac{2019}{2020}=\sqrt{2020^2-2.2019+\frac{2019^2}{2020^2}}+\frac{2019}{2020}\)
\(=\sqrt{2020^2-2.2020.\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2}+\frac{2019}{2020}\)
\(=\sqrt{\left(2020-\frac{2019}{2020}\right)^2}+\frac{2019}{2020}=2020-\frac{2019}{2020}+\frac{2019}{2020}\)
\(=2020\)
Vậy M=2020.
2) Xét : \(k\in N;k\ge2\)ta có:
\(\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{\left(k-1\right)k}-\frac{2}{k}\)
\(=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{k-1}+\frac{2}{k}-\frac{2}{k}\)
\(\Rightarrow\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)
\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=1+\frac{1}{k-1}+\frac{1}{k}\)
Cho \(k=3,4,...,2020.\)Ta có:
\(N=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2019^2}+\frac{1}{2020^2}}\)
\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2018}-\frac{1}{2019}\right)+\left(1+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(=2018+\frac{1}{2}-\frac{1}{2020}=2018\frac{1009}{2020}\)
Vậy \(N=2018\frac{1009}{2020}.\)
\(S=\frac{1}{3\sqrt{1}+3\sqrt{3}}+\frac{1}{3\sqrt{3}+3\sqrt{5}}+...+\frac{1}{3\sqrt{2017}+3\sqrt{2019}}\)
\(S=\frac{1}{3}\left(\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+...+\frac{1}{\sqrt{2017}+\sqrt{2019}}\right)\)
\(S=\frac{1}{3}\left[\frac{\sqrt{3}-\sqrt{1}}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+...+\frac{\sqrt{2019}-\sqrt{2017}}{2019-2017}\right]\)
\(S=\frac{1}{3}\cdot\frac{\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2017}}{2}\)
\(S=\frac{\sqrt{2019}-\sqrt{1}}{6}\)
\(2S=\frac{1}{3}\left(\frac{2}{\sqrt{1}+\sqrt{3}}+\frac{2}{\sqrt{3}+\sqrt{5}}+...+\frac{2}{\sqrt{2017}+\sqrt{2019}}\right)\)
\(2S=\frac{1}{3}\left(\frac{3-1}{\sqrt{1}+\sqrt{3}}+\frac{5-3}{\sqrt{3}+\sqrt{5}}+...+\frac{2019-2017}{\sqrt{2017}+\sqrt{2019}}\right)\)
\(2S=\frac{1}{3}\left(\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\sqrt{3}+1}+\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{3}+\sqrt{5}}+...+\frac{\left(\sqrt{2019}-\sqrt{2017}\right)\left(\sqrt{2019}+\sqrt{2017}\right)}{\sqrt{2019}+\sqrt{2017}}\right)\)
\(2S=\frac{1}{3}\left(\sqrt{3}-1+\sqrt{5}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2017}\right)\)
\(S=\frac{\sqrt{2019}-1}{6}\)
\(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\) (có thể chứng minh bằng quy nạp)
\(1+2+...+n=\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow\frac{1}{\sqrt{1^3+2^3+...+n^3}}=\frac{1}{\sqrt{\left(\frac{n\left(n+1\right)}{2}\right)^2}}=\frac{2}{n\left(n+1\right)}=2\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\frac{2}{n+1}=1-\frac{2017}{2019}=\frac{2}{2019}\)
\(\Rightarrow n+1=2019\Rightarrow n=2018\)