Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{n\left(n+1\right)}\)
\(=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{n\left(n+1\right)}=1-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{5}+...+\frac{2}{n}-\frac{2}{n+1}\)
Tới đây dễ rồi bạn rút gọn rồi tìm n
\(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)
\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{2003}{2004}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)\(\Rightarrow\frac{1}{n+1}=\frac{1}{4008}\)\(n+1=4008\Rightarrow n=4007\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2005}\)
\(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{4008}{2005}\)
\(2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)
\(2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)
\(=>2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4008}{2005}\)
\(2.\left(1-\frac{1}{x+1}\right)=\frac{4008}{2005}\)
=> \(1-\frac{1}{x+1}=\frac{4008}{2005}:2=\frac{2004}{2005}\)
\(\frac{1}{x+1}=1-\frac{2004}{2005}=\frac{1}{2005}\)
=>x+1=2005
=>x=2004
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{2}{n\left(n+1\right)}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{n\left(n+1\right)}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{n\left(n+1\right)}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{2010}{2011}\)
\(\Leftrightarrow n=4021\).
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{2001}{2003}\)
\(\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}\right)=\frac{1}{2}\cdot\frac{2001}{2003}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2003}\)
\(\Rightarrow x+1=2003\)
\(x=2002\)
Vậy x = 2002
Phân số đã cho có dạng: a/2+a+n với a=1,2,3,...,2004.
UCLN(a;2+a+n)=1 do đó a;2+a+n nguyên tố cùng nhau. Do vậy 2+n là số nguyên tố với n nhỏ nhất
Do đó 2+n=2003 (Vì 2003 là số nguyên tố)
Vậy n=2001
Phân sỗ đã cho có dạng : a/2 + a + n
a = 1 , 2 , 2 , 3 , ...... , 2004
ƯCLN( a ; 2 + a + n ) = 1 do đó a ; 2 + a + n là số nguyên tố cùng nhau . Do vậy 2 + n là số nguyên tố với n nhỏ nhất
Từ đó 2 + n = 2003 ( Vì 2003 là số nguyên tố )
\(\Rightarrow\)n = 2001
đặt a=1/3+1/6+1/10+...........+2/n(n+1)
1/2a=1/6+1/12+...........+1/n(n+1)
1/2a=1/2.3+1/3.4+........+1/n(n+1)
1/2a=1/2-1/3+1/3-1/4+.......+1/n-1/n+1
1/2a=1/2-1/n+1
a=(1/2--1/n+1):1/2=2003/2004
1/2-1/n+1=2003/2004.1/2
1/2-1/n+1=2003/4008
1/n+1=1/2-2003/4008
1/n+1=1/4008
suy ra n+1=4008
n=4007
n=4007 do