K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt a=1/3+1/6+1/10+...........+2/n(n+1)

1/2a=1/6+1/12+...........+1/n(n+1)

1/2a=1/2.3+1/3.4+........+1/n(n+1)

1/2a=1/2-1/3+1/3-1/4+.......+1/n-1/n+1

1/2a=1/2-1/n+1

a=(1/2--1/n+1):1/2=2003/2004

1/2-1/n+1=2003/2004.1/2

1/2-1/n+1=2003/4008

1/n+1=1/2-2003/4008

1/n+1=1/4008

suy ra n+1=4008

n=4007

17 tháng 3 2017

n=4007 do

8 tháng 1 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{n\left(n+1\right)}\)

\(=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{n\left(n+1\right)}=1-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{5}+...+\frac{2}{n}-\frac{2}{n+1}\)

Tới đây dễ rồi bạn rút gọn rồi tìm n

11 tháng 12 2016

\(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{2003}{2004}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)\(\Rightarrow\frac{1}{n+1}=\frac{1}{4008}\)\(n+1=4008\Rightarrow n=4007\)

 

 

11 tháng 12 2016

cảm ơn

19 tháng 4 2017

\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2005}\)

\(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{4008}{2005}\)

\(2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)

\(2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)

\(=>2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4008}{2005}\)

\(2.\left(1-\frac{1}{x+1}\right)=\frac{4008}{2005}\)

=> \(1-\frac{1}{x+1}=\frac{4008}{2005}:2=\frac{2004}{2005}\)

\(\frac{1}{x+1}=1-\frac{2004}{2005}=\frac{1}{2005}\)

=>x+1=2005

=>x=2004

28 tháng 4 2017

1/3 + 1/6 + 1/10 +...+ 2/x(x+1) = 2014/2015

DD
15 tháng 2 2022

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{2}{n\left(n+1\right)}\)

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{n\left(n+1\right)}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{n\left(n+1\right)}\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{2010}{2011}\)

\(\Leftrightarrow n=4021\).

23 tháng 4 2017

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{2001}{2003}\)

\(\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}\right)=\frac{1}{2}\cdot\frac{2001}{2003}\)

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)

\(\frac{1}{x+1}=\frac{1}{2003}\)

\(\Rightarrow x+1=2003\)

\(x=2002\)

Vậy x = 2002

23 tháng 4 2017

Bài này lớp 6 thật à bạn. 

5 tháng 6 2015

Phân số đã cho có dạng: a/2+a+n với a=1,2,3,...,2004.

UCLN(a;2+a+n)=1 do đó a;2+a+n nguyên tố cùng nhau. Do vậy 2+n là số nguyên tố với n nhỏ nhất

Do đó 2+n=2003 (Vì 2003 là số nguyên tố)

Vậy n=2001

Phân sỗ đã cho có dạng : a/2 + a + n

a = 1 , 2 , 2 , 3 , ...... , 2004

ƯCLN( a ; 2 + a + n ) = 1 do đó a ; 2 + a + n là số nguyên tố cùng nhau . Do vậy 2 + n là số nguyên tố với n nhỏ nhất

Từ đó 2 + n = 2003 ( Vì 2003 là số nguyên tố )

\(\Rightarrow\)n = 2001