Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: số nguyên tố thì chỉ có ước là 1 và chính số đó nên:
a) để 3k(k thuộc N ) là số nguyên tố thì k=1
b)để 7k(k thuộc N) là số nguyên tố thì k=1
Nếu k=0 thì 13.k=13.0=0 không là số nguyên tố
Nếu k=1 thì 13.k=13.1=1 là số nguyên tố
Nếu k >1 thì 13.k chia hết cho k => 13.k không là số nguyên tố
Vậy k chỉ có thể là 1.
Xét K=0=>3k=0(loại)
Xét K=1=>3k(thỏa mãn)
Xét k>1=>3k có nhiều hơn 2 ước (loại)
=> k=1
Tương tự với câu 7k
xét k=0=>3k=0(loại)
xét k=1=>3k=3(thỏa mãn)
xét k>1=>.3k có nhiều hơn 2 ước(loại)
=>k=1
tương tự với câu 7k
a) Nếu k > 1 thì 3k có ít nhất ba ước là 1, 3, k; nghĩa là nếu k > 1 thì 3k là một hợp số. Do đó để 3k là một số nguyên tố thì k = 1.
b) ĐS: k = 1
+để 3k là số nguyên tố thì k = 1
+để 7k là số nguyên tố thì k=1
a) \(k=1\) vì nếu \(k>1\) thì \(3k⋮3\) \(\rightarrow\)không phải là số nguyên tố
b) \(k=1\) vì nếu \(k>1\) thì \(7k⋮7\) \(\rightarrow\) không phải là số nguyên tố
a) Ta có : 3 là số nguyên tố
Để : 3k không là số nguyên tố\(\left(k\inℕ\right)\)\(\Rightarrow k\ne1\left(k\ge0\right)\)
b) Ta có : 7 là số nguyên tố
Để : 7k không là số nguyên tố (\(k\inℕ\))\(\Rightarrow k\ne1\left(k\ge0\right)\)