Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab
Theo bài ra, ta có:
ab+ba=n2
=>10a+b+10b+a=n2
=>11(a+b)=n2
=>n2⋮11
=>n2⋮112
=>11(a+b)⋮112
=>(a+b)=11
=>a,b∈\(\left\{\left(9,2\right);\left(8,3\right);\left(7,4\right);\left(6,5\right);\left(5.6\right);\left(4.7\right);\left(3.8\right)\left(2,9\right)\right\}\)
=>ab∈\(\left\{92;83;74;65;56;47;38;29\right\}\)
Gọi số cần tìm là ab (a;b thuộc N;a #0;a,b nhỏ hơn hoặc bằng 9)
Tổng là : n^2
=)ab-ba=n^2
=)a.9+b.9=n^2
=)9.(a+b)=n^2
=)n^2 chia hết cho 9
Mà a>b>0=)(a-b) lớn nhất là 9-1=8
n^2=8.9=72=)n nhỏ hơn hoặc bằng 8
Rồi bạn thử các trường hợp từ 0 cho đén 8
Rồi có 2 trường hợp chọn được rồi bạn phân tích thành phép cộng của a+b
Mà ab và ba là 2 số nguyên tố =)Bạn loại các trường hợp không phải số nguyên tố rồi kết luận số cần tìm.
gọi số cần tìm là ab (a, b = 1,2,..., 9)
giả thiết ta có: (ab)² - (ba)² = n² (ab và ba có gạch đầu)
<=> (10a+b)² - (10b+a)² = n² <=> [(10a+b) - (10b+a)][(10a+b) + (10b+a)] = n²
<=> (9a-9b)(11a+11b) = n² <=> 3².11.(a-b)(a+b) = n² (*)
do 11 là số nguyên tố nên (*) chỉ xãy ra khi a-b hoặc a+b có ước là 11
0 < a, b < 9 nên a+b < 22 và a-b < 9 vậy chỉ có 1 khã năng là a+b = 11
và ta còn phải có a-b là số chính phương (có thể mò vài cặp là đc) hoặc biện luận:
thấy a > b ; a+b = 11 => a = 11-b > 11/2 , chỉ cần kiểm tra cho b từ 1 đến 5
b = 1, a = 10 thỏa ; b = 5, a = 6 thỏa
vậy có 2 số thỏa mãn yêu cầu là: 11 và 65
(cái số 11 hơi kì nhưng vẫn thỏa mãn: 11² - 11² = 0² )
duong nhien la 11 va 65 roi ban oi neu ko tic minh la ban hoc giot
gọi số đó là ab
ab +ba = 11a + 11b chia het cho 11
=> ab +ba chia het cho11
nhớ tick cho mình nha
Gọi số cần tìm là ab.
Theo đề bào ta có:
\(ab+ba=c^2\)
\(10a+b+10b+a=c^2\)
\(11a+11b=c^2\)
\(11.\left(a+b\right)=c^2\)
Mà 11 là số nguyên tố nên a+b=11.
Với a=2=>b=9
...........
Chúc em học tốt^^
Gọi số cần tìm là ab (a khác 0; a,b là các chữ số)
Ta có: ab + ba = x2 (x thuộc N*)
=> (10a + b) + (10b + a) = x2
=> 10a + b + 10b + a = x2
=> 11a + 11b = x2
=> 11.(a + b) = x2
Ta đã biết số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn, không chứa các thừa số nguyên tố với số mũ lẻ nên để ab + ba là số chính phương thì a + b = 11.k2 (k thuộc N*)
Mà a,b là chữ số; a khác 0 => \(1\le a+b\le18\)=> a + b = 11
Giả sử a > b => a = 9; b = 2 hoặc a = 8; b = 3 hoặc a = 7; b = 4 hoặc a = 6; b = 5
Vậy số cần tìm là: 29; 38; 47; 56; 65; 74; 83; 92
link nè cậu theo hướng dẫn mà gõ nè
http://olm.vn/hoi-dap/question/132704.html
Gọi số đó là:: ab
ab+ba=11(a+b) là số chính phương
=> a+b chia hết cho 11=>a+b=11
=> các số đó là: 29;38;47;56;65;74;83;92
Vậy......