Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a chia 11 dư 5 ⇔ a = 11m + 5 ⇒ a + 6 = (11m + 5 )+ 6 = 11m + 11 = 11.(m + 1) chia hết cho 11. (m ∈ N)
Vì 77 chia hết cho 11 nên (a + 6) + 77 cũng chia hết cho 11 ⇔ a + 83 chia hết cho 11. (1)
a chia 13 dư 8 ⇔ a = 13n + 8 ⇒ a + 5 = (13n + 8) + 5 = 13n + 13 = 13.(n + 1) chia hết cho 11. (n ∈ N)
Vì 78 chia hết cho 13 nên (a + 5) + 78 cũng chia hết cho 13 ⇔ a + 83 chia hết cho 13. (2)
Từ (1) và (2) suy ra a + 83 chia hết cho BCNN(11; 13) ⇔ a + 83 chia hết cho 143
⇒ a = 143k - 83 (k ∈ N*)
Để a nhỏ nhất có 3 chữ số ta chọn k = 2. Khi đó a = 203
Bài 2 :
Gọi số cần tìm là a. Ta có
a + 6 chia hết cho 11 suy ra ( a+6) +77 chia hết cho 11 (1)
a+ 5 chia hết chỏ suy ra ( a+5) +78 chia hết cho 13 suy ra a+ 83 chia hết cho 13 (2)
a +83 chia hết cho 143
Từ (1) và (2) => a = 143k -83 ( k \(\in\) N* )
để được a nhỏ nhất có 3 chữ số ta chọn k = 2, được a = 203
Vậy số cần tìm là 203.
a chia 11 dư 5 ⇔ a = 11m + 5 ⇒ a + 6 = (11m + 5 )+ 6 = 11m + 11 = 11.(m + 1) chia hết cho 11. (m ∈ N)
Vì 77 chia hết cho 11 nên (a + 6) + 77 cũng chia hết cho 11 ⇔ a + 83 chia hết cho 11. (1)
a chia 13 dư 8 ⇔ a = 13n + 8 ⇒ a + 5 = (13n + 8) + 5 = 13n + 13 = 13.(n + 1) chia hết cho 11. (n ∈ N)
Vì 78 chia hết cho 13 nên (a + 5) + 78 cũng chia hết cho 13 ⇔ a + 83 chia hết cho 13. (2)
Từ (1) và (2) suy ra a + 83 chia hết cho BCNN(11; 13) ⇔ a + 83 chia hết cho 143
⇒ a = 143k - 83 (k ∈ N*)
Để a nhỏ nhất có 3 chữ số ta chọn k = 2. Khi đó a = 203
k cho mk nha
Ta gọi số cần tìm là a.
Theo đề ta có : a chia hết cho 11 - 5 hay a chia hết cho 6.
a chia hết cho 13 - 8 hay a chia hết cho 5.
Vì a chia hết cho 6
a chia hết cho 5
=> a thuộc BC ( 6 ; 5 )
6 = 2 . 3
5 = 5
BCNN ( 6 ; 5 ) = 2 . 3 . 5 = 30
BC ( 6;5 ) = B ( 30 ) = { 0 ; 30 ; 60 ; 90 ; 120 ; 150 ; ... }
Vì a nhỏ nhất có 3 chữ số
=> a = 120.
Ta có a chia cho 11 dư 5 => a = 11x + 5 => a + 6 = 11x + 5 + 6 = 11x + 11 chia hết cho 11
Do 77 chia hết cho 11 => a + 6 + 77 cũng chia hết cho 11 => a + 83 chia hết cho 11 (1)
Lại có a chia 13 dư 8 => a = 13y + 8 => a + 5 = 13y + 8 + 5 = 13y + 13 chia hết cho 13
Do 78 chia hết cho 13 => a + 5 + 78 chia hết cho 13 => a + 83 chia hết cho 13 (2)
Từ 1 và 2 => a + 83 chia hết cho BCNN(11;13) => a + 83 chia hết cho 143
=> a = 143k - 83
Để a nhỏ nhất và a có 3 chữ số => k = 2 => a = 203
a chia 11 dư 5⇔a=11m+5=>a+6=(11m+5)+6=11m|+11=11.(m+1) chia hết cho 11( m thuộc N)
Vì 77 chia hết cho 11 nên (a+6)+77 cũng chia hết cho 11⇔a+83 chia hết cho 11. (1)
a chia 13 dư 8⇔a=13n+8=>a+5=(13n+8)+5=13n+13=13.(n+1) chia hết cho 11 ( n thuộc N)
Vì 78 chia hết cho 13 nên (a+5)+78 cũng chia hết cho 13⇔a+83 chia hết cho 13. (2)
Từ (1) và (2)=>a+83chia hết cho BCNN(11;13)⇔a+83 chhia hết cho 143
=>a=143k-83( k thuộc N*)
Để a nhỏ nhất có 3 chữ số ta chọn k=2. Khi đó a=203