Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
420 chia hết cho a; 700 chia hết cho a
Mà a lớn nhất
=> a = ƯCLN(700; 420)
700 = 7. 22.52
420 = 7. 3. 22.5
=> ƯCLN(420; 700) = 7.22.5 = 140
Vậy a = 140
bài này dễ mà
Theo bài ra ta có: a là ƯCLN (420;700). Ta có: 420= 2^2x3x5x7; 700= 2^2x5^2x7. ƯCLN(420;700)= 2^2x5=20
Ta có: 420 chia hết cho a
700 chia hết cho a
=>a=ƯC(420,700)
Vì a lớn nhất
=>a=ƯCLN(420,700)=140
Vậy a=140
Theo đề bài: a sẽ là ƯCLN của 420 và 700
ƯCLN ( 420; 700) = 140
Vậy a = 140
Để 420 và 700 chia hết cho a (a lớn nhất)
=> \(a\inƯCLN\left(420,700\right)\)
\(420=2^2\cdot3\cdot5\cdot7\)
\(700=2^2\cdot5^2\cdot7\)
\(ƯCLN\left(420,700\right)=2^2\cdot5\cdot7=140\)
Vậy...
Vì 420 chia hết cho a và 700 chia hết cho a,mà a lớn nhất=> a = ƯCLN ( 420 , 700 )
=> 420 = 22 . 3 . 5. 7
700 = 22 . 52 . 7
=> ƯCLN (420,700) = 22 . 5 . 7 = 140
=> a = 140
Số 420 , 700 chia hết cho a mà a lớn nhất .
=> a \(\in\) ƯCLN ( 420 , 700 )
420 = 22 x 3 x 5 x 7
700 = 22 x 52 x 7
=> ƯCLN ( 420 , 700 ) = 22 x 5 x 7 = 140
Vậy a = 140