K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2022

T là tập hợp số nguyên tố là 2,3,5,7,11,13,17 ...

Vậy a sẽ là các số sao cho ( a+1 )hay ( a+2) nằm trong tập hợp T

 

3 tháng 3 2019

Viết lại đề bài:

Tìm số nguyên x sao cho \(\frac{6}{x+1}.\frac{x-1}{3}\)là số nguyên

Giải:

\(\frac{6}{x+1}.\frac{x-1}{3}\text{​​}\)

\(=\frac{3.2}{x+1}.\frac{x-1}{3}\text{​​}\)

\(=\frac{3.2.\left(x-1\right)}{\left(x+1\right).3}\text{​​}\)

\(=\frac{3.2.\left(x-1\right)}{3.\left(x+1\right)}​​\)

\(=\frac{3.2.\left(x-1\right)}{3.\left(x+1\right)}​​\)

\(=\frac{2.\left(x-1\right)}{\left(x+1\right)}​​\)

\(=2.\frac{\left(x-1\right)}{\left(x+1\right)}​​\)

Bí....

Sorr nhak

3 tháng 3 2019

Ta có:\(\frac{6x}{x+1}=\frac{6x+6-6}{x+1}=\frac{6\left(x+1\right)-6}{x+1}=6-\frac{6}{x+1}\)

Để\(\frac{6x}{x+1}\)là số nguyên \(\Leftrightarrow6⋮x+1\)

\(\Rightarrow x+1\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

\(\Rightarrow x=\left\{-7;-4;-3;-2;0;1;2;5\right\}\left(1\right)\)

Để\(\frac{x-1}{3}\)là số nguyên\(\Leftrightarrow\left(x-1\right)⋮3\)

\(\Rightarrow x-1=3k\Rightarrow x=3k+1\left(k\in Z\right)\left(2\right)\)

Từ (1) và (2)\(\Rightarrow x\in\left\{-2;1\right\}\)

Vậy \(x\in\left\{-2;1\right\}\)

22 tháng 8 2015

Toán lớp 6Phân tích thành thừa số nguyên tố

Đinh Tuấn Việt 20/05/2015 lúc 22:51

Theo đề bài ta có: 

 a = p1. p2n $\Rightarrow$⇒ a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.

nguyên 24/05/2015 lúc 16:50

Theo đề bài ta có: 

 a = p1. p2n $$

 a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$$

 m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 0

Captain America

22 tháng 8 2015

Có 21 ước

AH
Akai Haruma
Giáo viên
23 tháng 2 2022

Lời giải:
a. Để A là số nguyên tố thì 1 trong 2 thừa số $x-2, x+4$ có giá trị bằng 1 và số còn lại là số nguyên tố.

Mà $x-2< x+4$ nên $x-2=1$

$\Rightarrow x=3$

Thay vào $A$ thì $A=7$ là snt (thỏa mãn) 

b. Để $A<0\Leftrightarrow (x-2)(x+4)<0$

Điều này xảy ra khi $x-2,x+4$ trái dấu. Mà $x-2< x+4$ nên:

$x-2<0< x+4$

$\Rightarrow -4< x< 2$

$x$ nguyên nên $x=-3,-2,-1,0,1$

1 tháng 9 2020

(p là số nguyên tố)

TH1: n-2 =1 và 2n-5 =p

n-2 =1 => n=3 . Thay n=3 vào 2n-5 =2.3-5=1=>A không là số nguyên tố. (LOẠI)

TH2: 2n-5=1 và n-2=p

2n-5=1=>n=3. Thay n=3 vào n-2 =3-2 =1=> A không là số nguyên tố .(Loại)

TH3: 2n-5=-1 và n-2 = - p 

2n-5=-1=>n=2 . Thay n=2  vào n-2=1=> A không là số nguyên tố (loại)

TH4: n-2=-1 và 2n-5 =-p

n-2=-1=>n=1 thay n=1 vào 2n-5 =-3=> A là số nguyên tố (NHẬN)

1 tháng 9 2020

Mèo không hiểu lắm, còn cách nào khác không, hoặc là làm chi tiết hơn

4 tháng 5 2023

a, Có 4 cách chọn ngẫu nhiên

Không có cách chọn nào được số chia hết cho 5

\(\Rightarrow P=0\) ( xác xuất bằng 0)

b, Có 4 cách chọn 1 số ngẫu nhiên

Có 2 cách chọn 1 số nguyên tố đó là 11 , 13

\(\Rightarrow P=\dfrac{2}{4}=\dfrac{1}{2}\)