Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a thì a+8 ∈ BC(11;13) và a là số nhỏ nhất thỏa mãn 100≤a≤999
Ta có BCNN(11;13) = 11.13 = 143
BC(11;13) ∈ {0;143;286;...}
Vì a là số tự nhiên có ba chữ số nhỏ nhất nên a+8 = 143
a = 135
Vậy số cần tìm là 135
Bài 2 :
Gọi số cần tìm là a. Ta có
a + 6 chia hết cho 11 suy ra ( a+6) +77 chia hết cho 11 (1)
a+ 5 chia hết chỏ suy ra ( a+5) +78 chia hết cho 13 suy ra a+ 83 chia hết cho 13 (2)
a +83 chia hết cho 143
Từ (1) và (2) => a = 143k -83 ( k \(\in\) N* )
để được a nhỏ nhất có 3 chữ số ta chọn k = 2, được a = 203
Vậy số cần tìm là 203.
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
Có:
+) a chia 6 dư 2 => a - 2 chia hết cho 6 => ( a - 2 + 6 ) chia hết cho 6 => a +4 chia hết cho 6
+) a chia 9 dư 5 => a - 5 chia hết cho 9 => ( a - 5 + 9 ) chia hết cho 9 => a +4 chia hết cho 9
+) a chia 13 dư 9 => a -9 chia hết cho 13 => ( a - 9 + 13 ) chia hết cho 13 => a +4 chia hết cho 13
=> a +4 thuộc BC ( 6; 9 ; 13)
Có:
\(BCNN\left(6;9;13\right)=234\)
=> \(a+4\in\left\{0;234;468;702;936;1170;....\right\}\)mà a là số tự nhiên có 3 chữ số
=> \(a\in\left\{230;464;698;934\right\}\)