Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Đặt $a=6x, b=6y$ với $x,y$ là 2 số nguyên tố cùng nhau
$a>b\Rightarrow x>y$
$BCNN(a,b)=6xy=120$
$\Rightarrow xy=20$
Vì $x>y$ và $x,y$ nguyên tố cùng nhau $(x,y)=(20,1)$ hoặc $(x,y)=(5,4)$
$\Rightarrow (a,b)=(120,6)$ hoặc $(a,b)=(30,24)$
b. Bạn làm tương tự.
bài này t biết làm nè nhưng dài quá bạn có zalo ko mik chụp cho
Vì ƯCLN ( a;b ) = 360 : 60 = 6 nên ta có a = 6 . m ; b = 6 . n với ƯCLN ( m,n ) = 1
Vì a . b = 360 nên thay vào ta có:
6 . m . 6 . n = 360
\(\Rightarrow m.n=360:6:6\)
\(\Rightarrow m.n=10\)
Do m,n là hai số nguyên tố cùng nhau nên:
Nếu m = 2 và n = 5 thì a = 12 ; b = 30
Nếu m = 5 và n = 2 thì a = 30 ; b = 12
Vậy a ; b \(\in\left\{\left(12,30\right);\left(30,12\right)\right\}\)