K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

\(B=\frac{10n-3}{4n-10}\)

=> \(2B=\frac{20n-6}{4n-10}=\frac{20n-50+44}{4n-10}=\frac{5\left(4n-10\right)+44}{4n-10}\)

=> \(2B=5+\frac{44}{4n-10}=5+\frac{22}{2n-5}\)

Để B đạt lớn nhất => 2B đạt lớn nhất => \(\frac{22}{2n-5}\) đạt giá trị lớn nhất

=> 2n-5 đạt giá trị dương nhỏ nhất => 2n-5=1 => n=3

=> \(2B=5+\frac{22}{1}=27\)

=> Giá trị lớn nhất của B là: 27:2=13,5

ĐS: n=3; Bmax=13,5

23 tháng 11 2021

Answer:

\(B=\frac{10n-3}{4n-10}\)

\(=\frac{5.\left(2n-5\right)+22}{2.\left(n-5\right)}\)

\(=\frac{5}{2}+\frac{22}{2.\left(2n-5\right)}\)

\(=\frac{5}{2}+\frac{11}{2n-5}\)

Mà để B đạt giá trị lớn nhất thì \(\frac{11}{2n-5}\) đạt giá trị lớn nhất

Mà ta có: 11 > 0 thì \(\frac{11}{2n-5}\) đạt giá trị lớn nhất khi: 

2n - 5 > 0 và đạt giá trị nhỏ nhất khi: \(2n-5=1\Rightarrow2n=6\Rightarrow n=3\)

Tương tự: Giá trị lớn nhất là: \(11+\frac{5}{2}=13,5\)

Vậy giá trị lớn nhất của biểu thức \(B=13,5\) khi \(n=3\)

5 tháng 4 2018

\(2B=\frac{10n-3}{2n-5}=\frac{10n-25+22}{2n-5}=\frac{5\left(2n-5\right)}{2n-5}+\frac{22}{2n-5}\)

=> \(2B=5+\frac{22}{2n-5}\)

Để B đạt giá trị lớn nhất thì 2B phải đạt GTLN

=> \(\frac{22}{2n-5}\)phải đạt GTLN  => (2n-5) đạt GTNN => n=0 => 2n-5=-5

GTLN của 2B là: \(2B_{max}=5-\frac{22}{5}=\frac{3}{5}\)

=> \(B_{max}=\frac{3}{10}\) đạt được khi n=0

8 tháng 3 2020

Để B đạt GTLN thì 2B đạt GTLN

Ta có:

2B=2.10n−34n−10=20n−64n−10=20n−50+444n−10=5.(4n−10)+444n−102B=2.10n−34n−10=20n−64n−10=20n−50+444n−10=5.(4n−10)+444n−10

                                      2B=5.(4n−10)4n−10+444n−10=5+444n−102B=5.(4n−10)4n−10+444n−10=5+444n−10

Để 2B đạt GTLN thì 444n−10444n−10 đạt GTLN

=> 4n - 10 đạt GTNN

+ Với x < 3 thì 4n - 10 < 0, khi đó 444n−10<0444n−10<0

+ Với x≥3x≥3 thì 4n - 10 > 0, khi đó 444n−10444n−10 > 0 

Mà n nhỏ nhất => n = 3 

Như vậy, ta tìm được n = 3 thỏa mãn 2B đạt GTLN

Thay n = 3 vào B ta có:

B=10.3−34.3−10=30−312−10=272B=10.3−34.3−10=30−312−10=272

Vậy với n = 3 thì B đạt GTNN = 272

ta có:\(B=\frac{10n-3}{4n-10}=\frac{5.\left(2n-5\right)+22}{2.\left(2n-5\right)}=\frac{5}{2}+\frac{22}{2.\left(2n-5\right)}=\frac{5}{2}+\frac{11}{2n-5}\)

\(Bmax\Leftrightarrow\frac{5}{2}+\frac{11}{2n-5}max\Leftrightarrow\frac{11}{2n-5}max\Leftrightarrow2n-5=1\)

\(\Leftrightarrow2n=6\Leftrightarrow n=3\)

\(B=\frac{5}{2}+11=\frac{27}{2}\)

VẬY \(n=3\) THÌ \(maxB=\frac{27}{2}\)