Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2+y^2=\left(2xy+1\right)^2\Leftrightarrow4x^2+y^2=4x^2y^2+4xy+1\Leftrightarrow\left(2x-y\right)^2-4x^2y^2=1\)
\(\Leftrightarrow\left(2x-y-2xy\right)\left(2x-y+2xy\right)=1\)
Đến đây ta có các trường hợp
\(\hept{\begin{cases}2x-y-2xy=1\\2x-y+2xy=1\end{cases}}\)và \(\hept{\begin{cases}2x-y-2xy=-1\\2x-y+2xy=-1\end{cases}}\)
Giải ra được \(\left(x;y\right)\in\left\{\left(0;1\right);\left(0;-1\right)\right\}\)
Ta có: 2x2 + 2xy - x + y = 66
<=> (x + y)2 + x2 - y2 - (x - y) = 66
<=> (x + y)^2 - 1 + (x - y)(x + y - 1) = 65
<=> (x + y - 1)(x + y + 1) + (x - y)(x + y - 1) = 65
<=> (x + y - 1)(x + y + 1 + x - y) = 65
<=> (x + y - 1)(2x + 1) = 65 = 1. 65 = 5.13 (vì x,y nguyên dương)
Lập bảng:
x + y - 1 | 1 | 5 | 13 | 65 |
2x + 1 | 65 | 13 | 5 | 1 |
x | 32 | 6 | 2 | 0 |
y | -30 (ktm) | 0 | 12 | 66 |
Vậy ...
\(y\left(x+1\right)^2=-x^2+2018x-1\)
\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)
\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)
Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau
\(\Rightarrow2020⋮\left(x+1\right)^2\)
Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4
\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)
b.
Từ pt đầu:
\(x^2+xy-2y^2+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)
Thế xuống dưới ...
Ta có: \(4x^2+y^2< 2xy+2x+y+1\)
\(\Leftrightarrow8x^2+2y^2-4xy-4x-2y-2< 0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)< 4\)
\(\Leftrightarrow\left(2x-y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2< 4\)
Lại có: \(x,y\in Z^+\Rightarrow2x-1\ne0\)
\(\Rightarrow0< \left(2x-1\right)^2< 4\Rightarrow\left(2x-1\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=-1\\2x-1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=1\end{cases}}\Rightarrow x=1\)
\(0\le\left(y-1\right)^2< 4\Rightarrow\hept{\begin{cases}y-1=0\\y-1=-1\\y-1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=1\Rightarrow\left(2x-y\right)^2=1\left(tm\right)\\y=2\Rightarrow\left(2x-y\right)^2=0\left(tm\right)\end{cases}}\) (Ngoặc nhọn bạn chuyển thành ngoặc vuông nha tại olm không có như h ý.
\(\Rightarrow\left(x,y\right)=\left\{\left(1;1\right);\left(1;0\right)\right\}\)
Vậy ....................