Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+2x+6 chia het cho x+4
suy ra x^2+2x+3+2(x+4)+6 chia het cho x+4
x2+2x+6 chia hết cho x+4(vì là bội)
x2+4x-2x-8+14 chia hết cho x+4
x(x+4)-2(x+4)+14 chia hết cho x+4
(x-2)(x+4)+4 chia hết cho x+4
=>4 chia hết cho x+4 hay x+4EƯ(4)={1;-1;2;-2;4;-4}
=>xE{-3;-5;-2;-6;0;-8}
\(\Leftrightarrow2x+1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{0;-1;1;-2\right\}\)
=>4x-2+5 chia hết cho 2x-1
=>\(2x-1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{1;0;3;-2\right\}\)
2x-1 là bội của x+3
=> 2x-1 chia hết cho x+3
hay [2(x+3)-7] chia hết ho x+ 3
=> 7 chia hết cho x+ 3
x+3 \(\varepsilon\)Ư(7)={1,-1,7,-7}
x+3=1 x+3=-1 x+3=7 x+3= -7
x = 1-3 x = -1-3 x = 7-3 x = -7-3
x = -2 x = -4 x =4 x = -10
Vậy x= -2, x=-4,x= 4, x= -10
\(\Rightarrow2\left(x+1\right)-5⋮x+1\\ \Rightarrow x+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow x\in\left\{-6;-2;0;4\right\}\)
\(\Leftrightarrow x+1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{0;-2;4;-6\right\}\)
\(\Leftrightarrow x+1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{0;-2;4;-6\right\}\)
\(\Rightarrow2\left(x+1\right)-5⋮\left(x+1\right)\\ \Rightarrow5⋮\left(x+1\right)\\ \Rightarrow x+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow x\in\left\{-6;-2;0;4\right\}\)
2x-3 là bội của x+1
\(\Rightarrow2x-3⋮x+1\\ \Rightarrow2\left(x+1\right)-5⋮x+1\)
mà \(2\left(x+1\right)⋮x+1\forall x\\ \)
\(\Rightarrow5⋮x+1\\ \Rightarrow x+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\\x+1=5\\x+1=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=4\\x=-6\end{matrix}\right.\)
1. Giải:
Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)
\(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)
\(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)
Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.
⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)
Ta có bảng:
2x+1 | 1 | 3 | 7 | 21 |
x | 0 | 1 | 3 | 10 |
TM | TM | TM | TM |
Vậy xϵ\(\left\{0;1;3;10\right\}.\)
2. Giải:
Do (2x-18).(3x+12)=0.
⇒ 2x-18=0 hoặc 3x+12=0.
⇒ 2x =18 3x =-12.
⇒ x =9 x =-4.
Vậy xϵ\(\left\{-4;9\right\}.\)
3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.
S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.
S= 0 + 0 + ... + 0 + 2025.
⇒S= 2025.
=>4x-2+8 chia hết cho 2x-1
=>2x-1 thuộc {1;-1}
=>x thuộc {1;0}