K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

a)

| x-2 | = 3  =)) \(\orbr{\begin{cases}x-2=-3\\x-2=3\end{cases}}\)\(\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)

b) Tương tự câu a) nhé

c) | x+2 | = x =)) x \(\varepsilon=\theta\) x thuộc rỗng 

d) |x-2|=2-x =)) x = 2

e) |2x-1 | = 3 =)) \(\orbr{\begin{cases}2x-1=-3\\2x-1=3\end{cases}}\) =)) \(\orbr{\begin{cases}2x=-4\\2x=4\end{cases}}\)=)) \(\hept{\begin{cases}x=-2\\x=2\end{cases}}\)

g) |x-12|=x =)) x=6

k cho mình nha 

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

Bài:1 chứng minh các phân số sau tối giản với nthuoojc z1,     3n-2/4n-3   2,     4n+1/6n+1   Bài:2 cho a;b thuộc z chứng minh a,  6a+11b :a+7b:31         b,    5a+2b:179a+7b:17Bài 3 tìm số x,y biết1,  3/x+y/x+5/6      2,   5/x-y/3=1/6Bài 4 a, tìm x nguyên để các biểu thức đạt giá trị nhỏ nhất1,  A=(x+1)^2+2019         2, B+ giá trị thuyệt đối (2x+6)-2001b, Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất1,...
Đọc tiếp

Bài:1 chứng minh các phân số sau tối giản với nthuoojc z

1,     3n-2/4n-3   2,     4n+1/6n+1   

Bài:2 cho a;b thuộc z chứng minh a,  6a+11b :a+7b:31         b,    5a+2b:179a+7b:17

Bài 3 tìm số x,y biết

1,  3/x+y/x+5/6      2,   5/x-y/3=1/6

Bài 4 a, tìm x nguyên để các biểu thức đạt giá trị nhỏ nhất

1,  A=(x+1)^2+2019         2, B+ giá trị thuyệt đối (2x+6)-2001

b, Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất

1, A=2020-(x+3)^2020     2, B=2019-gíá trị tuyệt đối (2018-x)       3, C=2/(x-3)^2+5       4, D=3/ gía trị thuyệt đối  (x+2)+1

c, tìm giá trị nhỏ nhất của S=giá trị tuyệt đối (x+2)+giá trị tuyệt đối(2y-10)+2019

 

Các Bạn giúp mình mấy bài này nhé mình cảm ơn nhiều làm hết cho mình thì tốt quá mình cảm ơn^^

 

0

a) Để phân số \(\dfrac{26}{x+3}\) nguyên thì \(26⋮x+3\)

\(\Leftrightarrow x+3\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\)

hay \(x\in\left\{-2-4;-1;-5;10;-16;23;-29\right\}\)

b) Để phân số \(\dfrac{x+6}{x+1}\) nguyên thì \(x+6⋮x+1\)

\(\Leftrightarrow5⋮x+1\)

\(\Leftrightarrow x+1\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{0;-2;4;-6\right\}\)

c) Để phân số \(\dfrac{x-2}{x+3}\) nguyên thì \(x-2⋮x+3\)

\(\Leftrightarrow-5⋮x+3\)

\(\Leftrightarrow x+3\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{-2;-4;2;-8\right\}\)

d) Để phân số \(\dfrac{2x+1}{x-3}\) nguyên thì \(2x+1⋮x-3\)

\(\Leftrightarrow7⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;7;-7\right\}\)

hay \(x\in\left\{4;2;10;-4\right\}\)

30 tháng 6 2021

củm ơn ạ

13 tháng 2 2022

\(A=\left|x+1\right|+\left|y-2\right|+5\ge5\)

Dấu ''='' xảy ra khi x = -1 ; y = 2 

Vậy ... 

12 tháng 2 2019

Bài 1:

a) Số nguyên dương nhỏ nhất là 1

Do đó, ta có : x + 2011 = 1

x = 1 – 2011 = -2010

b) Các số nguyên có giá trị tuyệt đối nhỏ hơn 100 là -99 ; -98 ; … ; 98 ; 99

Tổng cần tìm là: ( -99 + 99 ) + ( -98 + 98 ) + … + ( -1 + 1 ) + 0 = 0 + 0 + ... + 0 = 0

\(A=x^2+14\)

Ta có: \(x^2\ge0\forall x\in R\)

\(\Rightarrow A=x^2+14\le14\)

Dấu " = " xảy ra khi \(x=0\)

Khi đó: \(A=0+14=14\)

Vậy \(x=0\)khi đạt \(GTNN=14\)

\(B=\left(x+1\right)^2-12\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\in R\)

\(\Rightarrow B=\left(x+1\right)^2-12\ge-12\)

Dấu " =" xảy ra khi \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy \(x=-1\)khi đạt \(GTNN=-12\)

\(C=\left|x-5\right|+15\)

Ta có: \(\left|x-5\right|\le0\forall x\in R\)

\(\Rightarrow C=\left|x-5\right|+15\ge15\)

Dấu " = " xảy ra khi \(\left|x-5\right|=0\Rightarrow x=5\)

Vậy \(x=5\)khi đạt \(GTNN=15\)

\(D=\left|x-2\right|+\left|y+5\right|+19\)

Ta có: \(\left|x-2\right|\ge0\forall x\in R\)

          \(\left|y+5\right|\ge0\forall y\in R\)

\(\Rightarrow D=\left|x-2\right|+\left|y+5\right|+19\ge19\)

Dấu " =" xảy ra khi \(\hept{\begin{cases}\left|x-2\right|=0\\\left|y+5\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=-5\end{cases}}}\)

Vậy \(x=2;y=-5\)khi đạt \(GTNN=19\)

hok tốt!!

22 tháng 3 2020

đúng ko đấy

20 tháng 5 2018

\(A=|2x+1|+|x-1|-|x-2|\)

Khi \(x< \frac{-1}{2}\) thì \(|2x+1|=-1-2x;|x-1|=1-x;|x-2|=2-x\)

\(\Rightarrow A=-2x-1+1-x+x-2\)

\(A=-2x-2\)

Khi \(\frac{-1}{2}\le x\le1\) thì \(|2x+1|=2x+1;|x-1|=1-x;|x-2|=2-x\)

\(\Rightarrow A=2x+1+1-x+x-2\)

\(A=2x\)

Khi \(1< x< 2\) thì \(|2x+1|=2x+1;|x-1|=x-1;|x-2|=2-x\)

\(\Rightarrow A=2x+1+x-1+x-2\)

\(A=4x-2\)

Khi \(x\ge2\) thì  \(|2x+1|=2x+1;|x-1|=x-1;|x-2|=x-2\)

\(\Rightarrow A=2x+1+x-1+2-x\)

\(A=2x+2\)

20 tháng 5 2018

cảm ơn ạ