K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>-153/189<-153/-17x<-153/207

=>189<-17x<207

mà x nguyên

nên x=12

7 tháng 4 2019

cho mình xin luôn cái cách giải

7 tháng 4 2019

Ta có -17/21<9/x<-17/23=>17/-23<9/x<17/-23

      =>17.x<-21.9

     Và -17.x>-23.9

=>-21.9>-17.x>-23.9

=>-189>17.x>-207

=>x=-12

Vậy x=-12 

29 tháng 6 2021

`-27/17<x<4/9`

`=>-1-10/17<x<4/9`

Mà x là số nguyên

`=>x in {-1,0}`

26 tháng 5 2017

Ta thấy 17/5  <  | - 20/5 |  <  21/5

=> x = - 20/5 = - 4.

26 tháng 5 2017

bậc của đa thức  f(x)=5 là

7 tháng 7 2016

1. \(\frac{-17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)

\(-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{7}{12}\)

\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)

\(-\frac{80}{84}< \frac{84x+48}{84}< \frac{49}{84}\)

\(-80< 84x+48< 49\)

\(\begin{cases}-80< 84x+48\\84x+48< 49\end{cases}\) 

\(\begin{cases}84x>-128\\84x< 1\end{cases}\)

\(\begin{cases}x>-\frac{32}{21}\\x< \frac{1}{84}\end{cases}\)

\(\Rightarrow-\frac{32}{21}< x< \frac{1}{84}\)

 

7 tháng 7 2016

\(-\frac{17}{21}\div\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)

\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)

\(-\frac{32}{21}< x< \frac{1}{84}\)

\(-1^{11}_{21}< x< \frac{1}{84}\)

\(\Rightarrow x\in\left\{-1;0\right\}\)

Vậy x = 0

\(\frac{4}{3}\times1,25\times\left(\frac{16}{5}-\frac{5}{16}\right)< 2x< 4-\frac{4}{3}+3-\frac{3}{2}+2\)

\(\frac{77}{16}< 2x< \frac{37}{6}\)

\(\frac{77}{32}< x< \frac{37}{12}\)

\(2^{13}_{32}< x< 3^1_{12}\)

=> x = 3

13 tháng 12 2018

ta có: lx-15l >= 0

suy ra 4*lx-15l >= 0

          4*lx-15l+2011 >= 2011

            A >= 2011

dấu "=" xảy ra khi lx-15l=0

                 suy ra x-15=0

                               x=0+15

                               x=15

Vậy GTNN của A=2011 khi x=15

13 tháng 12 2018

còn phần b bn 

20 tháng 8 2016

Ta có :

\(\left(x^2+4y^2+28\right)^2=17\left(x^4+y^4+14y^2+49\right)\)

\(\Leftrightarrow\left[x^2+4\left(y^2+7\right)\right]^2=17\left[x^4+\left(y^2+7\right)^2\right]\)

\(\Leftrightarrow16x^4-8x^2\left(y^2+7\right)+\left(y^2+7\right)^2=0\)

\(\Leftrightarrow\left[4x^2-\left(y^2+7\right)\right]^2=0\Leftrightarrow4x^2-y^2-7=0\)

\(\Leftrightarrow\left(2x+y\right)\left(2x-y\right)=7\)

Vì x , y nguyên dương nên \(2x+y>0\)\(2x+y>2x-y\)

Do đó \(2x+y=7\)\(2x-y=1\). Vậy \(x=2,y=3\)