Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x+1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{0;-2;2;-4\right\}\)
⇔x+1∈{1;−1; 3 ;−3}⇔x+1∈{1 ;− 1 ; 3 ;−3}
hay x∈{0;−2; 2;−4}
\(a,\Rightarrow2x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow x\in\left\{-2;1;2;5\right\}\\ b,=\dfrac{2\left(x-1\right)+1}{x-1}=2+\dfrac{1}{x-1}\in Z\\ \Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Rightarrow x\in\left\{0;2\right\}\\ c,\Rightarrow x^2-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow x^2\in\left\{2;4;8\right\}\\ \Rightarrow x^2=4\left(x\in Z\right)\\ \Rightarrow x=\pm2\)
a) Ta có: \(M=\frac{2x+5}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=\frac{2x+2+3}{x+1}\)
Vì \(2x+2⋮\left(x+1\right)\Rightarrow3⋮\left(x+1\right)\)
Nên \(x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x=\left\{0;-2;2;-4\right\}\)
b) Tương tự
\(a,\frac{-24}{x}+\frac{18}{x}=\frac{-24+18}{x}=\frac{-6}{x}\)
\(\Leftrightarrow x\inƯ(-6)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(b,\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2(x+1)-7}{x+1}=2-\frac{7}{x+1}\)
\(\Leftrightarrow7⋮x+1\Leftrightarrow x+1\inƯ(7)=\left\{\pm1;\pm7\right\}\)
Xét các trường hợp rồi tìm được x thôi :>
\(c,\frac{3x+2}{x-1}-\frac{x-5}{x-1}=\frac{3x+2-x-5}{x-1}=\frac{2x+7}{x-1}=\frac{2x-2+9}{x-1}=\frac{2(x-1)+9}{x-1}=2+\frac{9}{x-1}\)
\(\Leftrightarrow9⋮x-1\Leftrightarrow x-1\inƯ(9)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2;10;-8\right\}\)
d, TT
ĐỂ BIỂU THỨC \(A=\frac{6x-4}{2x+1}\)NHẬN GIÁ TRỊ NGUYÊN
TA CÓ: \(A=\frac{6x-4}{2x+1}=\frac{6x+3-7}{2x+1}=\frac{3.\left(2x+1\right)-7}{2x+1}\)
\(=\frac{3.\left(2x+1\right)}{2x+1}-\frac{7}{2x+1}=3-\frac{7}{2x+1}\)
ĐỂ \(A\inℤ\)
\(\Rightarrow\frac{7}{2x+1}\inℤ\)
\(\Rightarrow7⋮2x+1\)
\(\Rightarrow2x+1\inƯ_{\left(7\right)}=\left(1;-1;7;-7\right)\)
NẾU \(2x+1=1\Rightarrow2x=0\Rightarrow x=0\left(TM\right)\)
\(2x+1=-1\Rightarrow2x=-2\Rightarrow x=-1\left(TM\right)\)
\(2x+1=7\Rightarrow2x=6\Rightarrow x=3\left(TM\right)\)
\(2x+1=-7\Rightarrow2x=-8\Rightarrow x=-4\left(TM\right)\)
VẬY X = ....................
CHÚC BN HỌC TỐT!!!!!!
Ta có :
\(A=\frac{6x-4}{2x+1}=\frac{6x+3-7}{2x+1}=\frac{3\left(2x+1\right)}{2x+1}-\frac{7}{2x+1}=3-\frac{7}{2x+1}\)
Để A là số nguyên hay nói cách khác thì \(7⋮\left(2n+1\right)\)\(\Rightarrow\)\(\left(2n+1\right)\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)
Suy ra :
\(2x+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(0\) | \(-1\) | \(3\) | \(-4\) |
Vậy \(x\in\left\{-4;-1;0;3\right\}\)
Chúc bạn học tốt ~
Điều kiên:2x+1 khác 0 nên x khác -1/2. Ta có: A=\(\frac{6x+3-7}{2x+1}=3+\frac{7}{2x+1}\) rồi suy ra 2x+1= 7, -7, 1, -1. Vậy x=3,-4,0,-1.
Ta có : \(\frac{2x-1}{2x+3}=\frac{2x+3-4}{2x+3}=1-\frac{4}{2x+3}\)
Để \(\frac{2x-1}{2x+3}\in Z\) thì \(\frac{4}{2x+3}\in Z\)
Suy ra 4 chia hết cho 2x + 3
=> 2x + 3 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> 2x = {-7;-5;-4;-2;-1;1}
=> x = -1
Ta có :
\(\frac{2x+1-5}{2x+1}=1-\frac{5}{2x+1}\)
để biểu thức trên có giá trị nguyên thì \(\frac{5}{2x+1}\in Z\)
\(\Rightarrow5⋮2x+1\)\(\Rightarrow2x+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Lập bảng ta có :