Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+,p=2=>p+10=12 là hợp số(KTM)
+,p=3=>p+10=13 (số nguyên tố)=>p+20=23(số nguyên tố)
+, p>3=>p=3k+1 hoặc 3k+2
+,p=3k+1=>p+20=3k+1+20=3k+21 chia hết cho 3
=>p+20 có ít nhất 3 ước là: 1;3;p+20
=>p+20 là hợp số(KTM)
+,p=3k+2=>p+10=3k+2+10=3k+12 chia hết cho 3
=>p+10 có ít nhất ba ước là: 1;3;p+10
=>p+10 là hợp số.
Vậy p=3 thỏa mãn.
Chúc bạn thành công trong học tập
Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số.
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố.
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số.
Vậy p = 3.
2.
Giả sử f(x) chia cho 1 - x^2 được thương là g(x) và dư là r(x). Vì 1 - x^2 có bậc là 2 nên r(x) có bậc tối đa là 1, suy ra r(x) = ax + b. Từ đó f(x) = (1 - x^2)g(x) + ax + b, suy ra f(1) = a + b và f(-1) = -a + b; hay a + b = 2014 và -a + b = 0, suy ra a = b = 1007.
Vậy r(x) = 1007x + 1007.
3.
Với a,b > 0, dùng bất đẳng thức CauChy thì có
(a + b)/4 >= can(ab)/2 (1),
2(a + b) + 1 >= 2can[2(a + b)].
Dùng bất đẳng thức Bunhiacopski thì có
can[2(a + b)] >= can(a) + can(b);
thành thử
2(a + b) + 1 >= 2[can(a) + can(b)] (2).
Vì các vế của (1) và (2) đều dương nên nhân chúng theo vế thì có
[(a + b)/4][2(a + b) + 1] >= can(ab)[can(a) + can(b)],
hay
(a + b)^2/2 + (a + b)/4 >= acan(b) + bcan(a).
Dấu bằng đạt được khi a = b = 1/4.
Bài 2 : c)
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.
Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp :
- Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !
các bạn có thể trả lời chi tiết cho mk đc k, mk đang cần gấp
a) Đem chia số nguyên tố p cho 3 xảy ra 3 khả năng về số dư : dư 0 hoặc dư 1 hoặc dư 2
+) Nếu p chia cho 3 dư 0 => p chia hết cho 3 ; mà p là số nguyên tố => p = 3
khi đó p + 2 = 3 + 2 = 5 ( thỏa mãn )
p + 10 = 3 + 10 = 13 ( thỏa mãn )
+) Nếu p chia cho 3 dư 1 => p = 3k + 1 ( k e N )
khi đó p + 2 = 3k + 1 + 2 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3
mà p + 2 > 3 => p + 2 là hợp số ( loại )
+) nếu p chia cho 3 dư 2 => p = 3k + 2 ( k e N )
khi đó p + 10 = 3k + 2 + 10 = 3k + 12 = 3 ( k + 4 ) chia hết cho 3
mà p + 10 > 3 => p + 10 là hợp số ( loại )
vậy p = 3
chúc bạn học giỏi ^.~