K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

a. p có 3 dạng : p ; p+1 ; p+2

14 tháng 1 2018

a. Số p có một trong ba dạng : 3k , 3k+1 , 3k+2   (k thuộc N*)

Nếu p = 3k thì p = 3 ( Vì p là số nguyên tố ) , khi đó p+2 = 5 , p+4 = 7 đều là số nguyên tố

Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số ( loại )

Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên p + 4 là hợp số  ( loại )

Vậy p = 3

8 tháng 11 2014

a; nếu p=3 thì p+2=5 , p+4=7 đều là số nguyên tố

    nếu p>3 thì p có 2 dạng : p=3k+1, p=3k+2

     với p=3k+1 thì p+2=3k+1+2=3k+3 chia hết cho 3 => p+2 là hợp số

    với p=3k+2 thì p+4=3k+2+4=3k+6 '''''''''''''''''''''''''''''''''''''''''''' =>p+4 là hợp số

                         Vậy p=3 thỏa mãn đề bài 

 

     các phần còn lại tương tự

 

9 tháng 1 2015

Bài 1 :+ Nếu p = 2 => p + 2 = 4 P (loại)
+ Nếu p = 3 => p + 2 = 5 P , p + 4 = 7 P
+ Nếu p > 3 => vì p nguyên tố nên p 3 => p = 3k + 1; p = 3k + 2(k N)
Trường hợp: p = 3k + 1 => p + 2 = 3k + 3 = 3(k + 1) 3
mà p > 3 nên p là hợp số
Trường hợp: p = 3k + 2 => p + 4 = 3k + 6 = 3(k + 2) 3
mà p > 3 nên p là hợp số
=>không có giá trị nguyên tố p lơn hơn 3 nào thoả mãn.
Vậy p = 3 là giá trị duy nhất cần tìm

9 tháng 1 2015

1) p=3

p=3

p=3

p=5

18 tháng 7 2015

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

18 tháng 7 2015

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

1 tháng 11 2015

Bài 2 : c)

+Nếu p = 2 ⇒ p + 2 = 4 (loại)

+Nếu p = 3 ⇒ p + 6 = 9 (loại)

+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)

+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4

   -Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)

   -Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)

   -Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)

   -Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)

⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn

Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.

Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp : 

 - Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !

28 tháng 10 2015

a

,- Nếu P=2     P+2=2+2=4 ( chia hết  cho 2 loại)

 - Nếu P=3     P+2=3+2=5 (chon)

                     P+4=3+4=7 (chon)

 -  Nếu P>3 thì P = 3k+1;3k+2

    Với P=3k+1 thì P+2=3k+1+2=3(k+1) ( chia hết  cho 3 loại)

     Với P=3k+2 thì P+4=3k+2+4=3(k+2) ( chia hết  cho 3 loại)

      Vậy P=3

b,

,- Nếu P=2     P+10=2+10=12 ( chia hết  cho 2 loại)

 - Nếu P=3     P+10=3+10=13 (chon)

                     P+14=3+14=17 (chon)

 -  Nếu P>3 thì P = 3k+1;3k+2

    Với P=3k+1 thì P+14=3k+1+14=3(k+5) ( chia hết  cho 3 loại)

     Với P=3k+2 thì P+10=3k+2+10=3(k+4) ( chia hết  cho 3 loại)

      Vậy P=3

Bạn làm phần c như hai phần a,b

a) Với p=1

Ta có

p+2=1+2=3 (nguyên tố,thỏa mãn)

p+4=1+4=5 (thỏa mãn )

Nhưng p lại là 1 số nguyên tố mà 1 ko phải số nguyên tố nên p=1 (loại)

Với p=2

Ta có:

p+2=2+2=4 (loại)

=>Trường hợp p=2 (loại)

Với p=3

Ta có 

p+2=3+2=5 (thỏa mãn)

p+4=3+4=7 (thỏa mãn)

=>Trường hợp p=3 (thỏa mãn)

Với p>3 thì p có dạng 3k+1 hoặc 3k+2

+,p=3k+1

thì p+2=3k+1+2=3k+3 chia hết cho 3 là hợp số( loại)

+,p=3k+2

thì p+4=3k+2+4=3k+6 chia hết cho 3 là hợp số( loại)

Vậy để p là số nguyên tố và p+2 và p+4 cũng là số nguyên tố thì p=3

Các câu khác bn lm tương tự nha

Mk ko chắc là lm đúng đâu nếu sai thì xl bn nhiều