Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
Đặt \(\frac{p+1}{2}=x^2;\frac{p^2+1}{2}=y^2\left(x;y\inℕ^∗;x< y\right)\)
\(\Rightarrow p+1=2x^2;p^2+1=2y^2\) => p là số lẻ
Ta dễ thấy rằng \(2x^2\equiv2y^2\left(modp\right)\) mà p lẻ nên \(x^2\equiv y^2\left(modp\right)\)
Mặt khác ta có:\(x^2-y^2=\left(x-y\right)\left(x+y\right)⋮p\Rightarrow x+y=p\) ( vì x < y < p )
Từ đó ta dễ có rằng \(p^2+1=2\left(p-x\right)^2=2p^2-4px+2x^2=2p^2-4px+p+1\)
\(\Rightarrow4px=p^2+p\Leftrightarrow4x=p+1\Rightarrow2x^2=4x\Rightarrow x=0\left(h\right)x=2\Rightarrow p=-1\left(h\right)p=7\)
Mà p là số nguyên tố nên p = 7
Vậy p = 7
cho mình hỏi là tại sao có 2x2 \(\equiv\) 2y2 (mod p)
1)
A= abc + bca + cab = 111a + 111b + 111c = 3 . 37 . ( a +b + c )
số chính phương phải chứa thừa số nguyên tố với số mũ chẵn, do đó a + b + c phải bằng 37k2 ( k \(\in\)N ) . điều này vô lý vì 3 \(\le\)a + b + c \(\le\)37
Vậy A không là số chính phương