K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017


nếu p=5 thì các số kia là snt
nếu p=5k+1 thì p+14=5k+15  ko là số nt
nếu p=5k+2 thì....                 ko là số nt
nếu p=5k+3 thì....                 ko là số nt
nếu p=5k+4 thì....                 ko là số nt
vậy p=5 thỏa mãn y/c đề bài

28 tháng 4 2019

+) Với p = 2 thì p2 + 2 = 22 + 2 = 4 + 2 = 6 (loại vì là hợp số)

+) Với p = 3 thì \(\hept{\begin{cases}2p-1=2.3-1=6-1=5\\p^2+2=3^2+2=9+2=11\end{cases}}\left(tm\right)\)

+) Với p > 3, p có dạng 3k + 1 hoặc 3k + 2

TH1: p = 3k + 1

\(\Rightarrow p^2+2=\left(3k+1\right)^2+2=9k^2+6k+1+2=9k^2+6k+3⋮3\)(loại)

TH2: p = 3k + 2

\(\Rightarrow2p-1=2\left(3k+2\right)-1=6k+4-1=6k+3⋮3\) (loại)

Vậy p = 3

28 tháng 4 2019

ban oi phai dung dong du

7 tháng 4 2016

so nguyen to nho nhat do la 2

14 tháng 7 2016

 p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

17 tháng 10 2021

undefined

k cho mik nhé

a: Trường hợp 1: p=2

=>p+11=13(nhận)

Trường hợp 2: p=2k+1

=>p+11=2k+12(loại)

b: Trường hợp 1: p=3

=>p+8=11 và p+10=13(nhận)

Trường hợp 2: p=3k+1

=>p+8=3k+9(loại)

Trường hợp 3: p=3k+2

=>p+10=3k+12(loại)

23 tháng 4 2017

Để p + 11 là số nguyên tố thì p là số chẵn (nếu p là số lẻ thì p + 11 là số chẵn \(\Rightarrow p+11⋮2\) mà chia hết cho một số thì không phải là số nguyên tố)

Trong tập hợp các số nguyên tố chỉ có 2 là số chẵn. Vậy p = 2

23 tháng 4 2017

b) Để p + 8, p + 10 là số nguyên tố thì p là số lẻ (nếu p là số chẵn thì \(p+8⋮2,p+10⋮2\) mà chia hết cho một số thì không phải là số nguyên tố

Nếu p = 3, p + 8 = 3 + 8 = 11 là số NT; p + 10 = 3 + 10 = 13 là số NT (chọn)

Nếu \(p=3k\left(k\in N|k>1\right)\)thì p là hợp số (loại)

Nếu \(p=3k+1\left(k\in N\right)\Rightarrow p+8=3k+1+8=3k+9⋮3\) (loại)

Nếu \(p=3k+2\left(k\in N\right)\Rightarrow p+10=3k+2+10=3k+9⋮3\)

(loại)

Vậy p=3