Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê
<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}
<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}
Bạn tự tính giá trị với mỗi n
b) Tương tự
Ta có : \(\frac{n-3}{n+4}=\frac{n+4-7}{n+4}=\frac{n+4}{n+4}-\frac{7}{n+4}=1-\frac{7}{n+4}\)
Để \(\frac{n-3}{n+4}\in Z\) thì 7 chia hết cho n + 4
=> n + 4 thuộc Ư(7) = {-7;-11;7}
Ta có bảng :
n + 4 | -7 | -1 | 1 | 7 |
n | -11 | -5 | -3 | 3 |
câu 1 cho A rồi làm gì nữa vậy
câu 2 mình nói cách làm rồi sau này bạn tự áp dụng nhé !
với những bài như thế này thì bạn rút gọn phân thức (nhớ đk là mẫu khác 0 ) , chẳng hạn :
\(A=\frac{3n+9}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
vì 3 là số nguyên , => để A nguyên thì 21/(n-4) phải nguyên mà n nguyên (*) nên n-4 là ước của 21 từ đó tìm n
(*) nếu đề bài ko cho n nguyên thì ko làm cách này đc đâu nhé ! nhưng lớp 6 chắc chưa học đến cái đó đâu .
Đặt A=3n+9/n-4
ta có để A thuộc Z ta có
3n+9=3(n-4)+17
ta có 3(n-4) chia hết cho n-4
suy ra 17 chia hết cho n-4
n-4 thuộc ước của 17
Ư(17)={1;-1;17;-17}
th1 n-4=1 suy ra n=5
th2 n-4=-1 suy ra n=3
th3 n-4=17 suy ra n=21
th4 n-4=-17 suy ra n=-13
Vậy n={5;3;21;-13}
B, Đặt B=5/n+1
Để B nhận giá trị nguyên thì 5 phải chia hết cho n+1
n+1 thuộc ước của 5
Ư(5)={1;-1;-5;5}
th1 n+1=1 suy ra n=0
th2 n+1=-1 suy ra n=-2
th3 n+1=-5 suy ra n=-6
th4 n+1=5 suy ra n=4
c, Đặt C=6n+5/2n-1
Để C nhận giá trị nguyên thì 6n+5 phải chia hết cho 2n-1
6n+5=6(n-1)+11
ta có 6(n-1) chia hết cho 2n-1
suy ra 11 chia hết cho 2n-1
2n-1 thuộc ước của 11
Ư(11)={1;-1;-11;11}
th1 2n-1=11 suy ra n=6
th2 2n-1=-11 suy ra n=-5
th3 2n-1=1 suy ra n=1
th4 2n-1=-1 suy ra n=0
n={6;5;1;0}
a) \(\frac{7}{2n+1}\)có giá trị nguyên \(\Leftrightarrow\) \(7\)\(⋮\) \(2n+1\)\(\Rightarrow\)\(2n+1\)\(\in\)\(Ư\left(7\right)=\left[1;7;-1;-7\right]\)
\(\Rightarrow2n\in\left[0;6;-2;-8\right]\)\(\Rightarrow n\in\left[0;3;-1;-4\right]\)
b) \(\frac{4}{3n+2}\)có giá trị nguyên \(\Leftrightarrow4⋮3n+2\Rightarrow3n+2\inƯ\left(4\right)=\left[1;2;4;-1;-2;-4\right]\)\(\Rightarrow3n\in\left\{-1;0;2;-3;-4;-6\right\}\)\(\Rightarrow n\in\left[\frac{-1}{3};0;\frac{2}{3};-1;\frac{-4}{3};-2\right]\). Mà \(n\in Z\Rightarrow n\in\left[0;-1;-2\right]\)
c) \(\frac{n+1}{n+5}\)cos giá trị nguyên \(\Leftrightarrow n+1⋮n+5\Rightarrow n+1-\left(n+5\right)⋮n+5\Leftrightarrow n+1-n-5⋮n+5\Rightarrow-4⋮n+5\)
\(\Rightarrow n+5\in\left[1;4;-1;-4\right]\Rightarrow n\in\left[-4;-1;-6;-9\right]\)
d) \(\frac{2n+15}{2n-1}\in Z\Leftrightarrow2n+15⋮2n-1\Rightarrow2n+15-\left(2n-1\right)⋮2n-1\Rightarrow2n+15-2n+1⋮2n-1\)
\(\Rightarrow16⋮2n-1\Rightarrow2n-1\inƯ\left(16\right)=\left[1;2;4;8;16;-1;-2;-4;-8;-16\right]\)
\(\Rightarrow2n\in\left[2;3;5;9;17;0;-1;-3;-7;-15\right]\)\(\Rightarrow n\in\left[1;0\right]\)
a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)
\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)
\(\Rightarrow3n-9-3n+12⋮n-4\)
\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)
\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)
\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)
b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)
\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)
\(\Rightarrow6n+5-6n+3⋮2n-1\)
\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)
Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4
Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4
Mà 3. ( n - 4 ) chia hết cho n - 4
3 . ( n - 4 ) + 21 chia hết cho n - 4 <=> 21 chia hết cho n - 4
=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 }
n - 4 = 1 => n = 5
n - 4 = 3 => n = 7
n - 4 = 7 => n = 11
n - 4 = 21 => n = 25
Vậy n = { 5 ; 7 ; 11 ; 25 }