K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để A là phân số thì n-2<>0

=>n<>2

Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)

b: Để A nguyên thì 2n+1 chia hết cho n-2

=>2n-4+5 chia hết cho n-2

=>\(n-2\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{3;1;7;-3\right\}\)

2 tháng 3 2020

Để \(\frac{10}{2n-3}\)là số nguyên thì 10 \(⋮\)2n-3

=> 2n -3 thuộc Ư(10) ={ 1; 2; 5; 10; -1; -2; -5; -10}

Vì 2n-3 là số lẻ nên 2n-3 \(\in\){1; -1; 5; -5}

=> 2n \(\in\){ 4; 2; 8; -2}

=> n \(\in\){ 2; 1; 4; -1}

Vậy...

a)Để \(\frac{10}{2n+3}\)là một số nguyên thì \(10⋮2n+3\)

=>\(2n+3\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

+)Ta có bảng:

2n+3-11-22-55-1010
n-2\(\in Z\)-1\(\in Z\)-2,5\(\notin Z\)-0,5\(\notin Z\)-4\(\in Z\)1\(\in Z\)-6,5\(\notin Z\)3,5\(\notin Z\)

Vậy n\(\in\){-2;-1;-4;1}

Chúc bn học tốt

Câu 1:

a) \(\dfrac{n-5}{n-3}\) 

Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\) 

\(n-5⋮n-3\) 

\(\Rightarrow n-3-2⋮n-3\) 

\(\Rightarrow2⋮n-3\) 

\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\) 

Ta có bảng giá trị:

n-1-2-112
n-1023

Vậy \(n\in\left\{-1;0;2;3\right\}\) 

b) \(\dfrac{2n+1}{n+1}\) 

Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)  

\(2n+1⋮n+1\) 

\(\Rightarrow2n+2-1⋮n+1\) 

\(\Rightarrow1⋮n+1\) 

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

n-1-11
n02

Vậy \(n\in\left\{0;2\right\}\) 

Câu 2:

a) \(\dfrac{n+7}{n+6}\) 

Gọi \(ƯCLN\left(n+7;n+6\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản

b) \(\dfrac{3n+2}{n+1}\) 

Gọi \(ƯCLN\left(3n+2;n+1\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản

a) Để n+4/n có giá trị nguyên thì n+4\(⋮\)n

Vì n chia hết cho n nên 4 chia hết cho n

-->n thuộc Ư(4)={1;2;4}

Vậy n thuộc {1;2;4}

c) Để 6/n-1 có giá trị nguyên thì 6 chia hết cho n-1

-->n-1 thuộc Ư(6)={1;2;3;6}

+,n-1=1 \(\Rightarrow\)n=2

+,n-1=2 \(\Rightarrow\)n=3

+,n-1=3 \(\Rightarrow\)n=4

+,n-1=6 \(\Rightarrow\)n=7

Vậy n thuộc {2;3;4;7}