K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2015

giải giùm nha các bạn!!

2 tháng 3 2016

Vì \(\frac{3}{y}<\frac{y}{7}\)

=>21<y^2(1)

Vì \(\frac{y}{7}<\frac{4}{y}\)

<=>y^2<28(2)

Từ (1) và(2)

=>21<y^2<28

=>y^2=25

<=>y=5 hoặc y=-5

16 tháng 12 2016

Vì x, y, z là các số nguyên dương nên x,y,z \(\ge1\)

Ta có

\(x^2+y^3+z^4=90\)

\(\Rightarrow z^4< 90\)

Ta thấy rằng \(\hept{\begin{cases}4^4=256>90\\3^4=81< 90\end{cases}}\)nên z không thể lớn hơn 4 được

Hay z nhận các giá trị là 1, 2, 3

Với z = 3 thì

\(x^2+y^3=90-3^4=9\)

Tương tự như trên ta cũng thấy được: y chỉ thể nhận các giá trị 1,2

Thế vô lần lược tìm được: y = 2, x = 1

Xét lần lược các trường hợp của z sẽ tìm được các nghiêm còn lại

Các bộ số cần tìm là: \(\left(x,y,z\right)=\left(1,2,3\right);\left(5,4,1\right);\left(9,2,1\right)\)

Mình chỉ hướng dẫn bạn cách làm thôi nhé.

17 tháng 2 2020

Vì x,y,z là các số nguyên dg nên x,y,z >/1 

Ta có : x+y+z= 90

Suy ra z4 < 90

Ta thấy rằng {4= 256 > 90 , 3= 81 < 90 nên z ko thể >4

Hay z nhận các gt là 1,2,3

Với z=3 thì :

x2

30 tháng 3 2022

Giúp nhanh đi mà pls

23 tháng 12 2016

Bạn tham khảo ở đây nhé

Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath

21 tháng 2 2019

\(\frac{1}{x}+\frac{y}{3}=\frac{1}{6}\)

=> \(\frac{1}{x}=\frac{1}{6}-\frac{y}{3}\)

=> \(\frac{1}{x}=\frac{1-2y}{3}\)

=> x(1 - 2y) = 3 = 1 . 3 = 3.1 = (-1) . (-3) = (-3) . (-1)

Lập bảng :

1  - 2y 1 -1 3 -3
  x 3 -3 1 -1
  y 0 1 -1 2

Vậy ...

21 tháng 2 2019

\(\frac{1}{x}+\frac{y}{3}=\frac{1}{6}\)

\(\Leftrightarrow\frac{3}{3x}+\frac{xy}{3x}=\frac{1}{6}\)

\(\Leftrightarrow\frac{3+xy}{3x}=\frac{1}{6}\)

\(\Leftrightarrow6\left(3+xy\right)=3x\)

\(\Leftrightarrow2\left(3+xy\right)=x\)

\(\Leftrightarrow6+2xy=x\)

\(\Leftrightarrow6=x-2xy\)

\(\Leftrightarrow6=x\left(1-2y\right)\)

\(\Rightarrow\hept{\begin{cases}x\\1-2y\end{cases}}\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Ta có bảng sau :

\(x\)\(-6\)\(-3\)\(-2\)\(-1\)\(1\)\(2\)\(3\)\(6\)
\(1-2y\)\(-1\)\(-2\)\(-3\)\(-6\)\(6\)\(3\)\(2\)\(1\)
\(y\)\(1\)\(\varnothing\)\(2\)\(\varnothing\)\(\varnothing\)\(-1\)\(\varnothing\)\(0\)

Vậy \(x,y\in\left\{\left(-6;-1\right);\left(-3;2\right);\left(3;-1\right);\left(1;0\right)\right\}\)