Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương
Biến đổi phương trình ta có :
\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :
TH1 : \(2n-1=3u^2;2n+1=v^2\)
TH2 : \(2n-1=u^2;2n+1=3v^2\)
TH1 :
\(\Rightarrow v^2-3u^2=2\)
\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )
Còn lại TH2 cho ta \(2n-1\)là số chính phương
b) Ta có :
\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)
\(\Leftrightarrow n^2=3k^2+3k+1\)
\(\Leftrightarrow4n^2-1=12k^2+12k+3\)
\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)
- Xét 2 trường hợp :
TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)
TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)
+) TH1 :
Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )
+) TH2 :
Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )
Ta có: \(a_n=1+\frac{2^n\left[1.3.5...\left(2n-1\right)\right]}{\left(n+5\right)\left(n+6\right)...\left(2n\right)}\)
\(=1+\frac{2^n\left(2n\right)!}{\left[2.4.6..\left(2n\right)\right]\left[\left(n+5\right)\left(n+6\right)..\left(2n\right)\right]}\)
\(=1+\frac{\left(2n\right)!}{n!\left(n+5\right)\left(n+6\right)...\left(2n\right)}\)
\(=1+\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\)
mặt khác \(1+\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)=\left(n^2+5n+5\right)^2\)
do đó an luôn là SCP
Đặt \(a-b=x;b-c=y;c-a=z\)
\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)
Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)
\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)
\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
Câu hỏi của Trương Tiền Phương - Toán lớp 9 - Học toán với OnlineMath
không dùng denta