Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4+(1−2m)x2+m2−1(1)
Đặt t=x2(t\(\ge\) 0) ta được:
t2+(1-2m)t+m2-1(2)
a)Để PT vô nghiệm thì:
\(\Delta=\left(1-2m\right)^2-4.1.\left(m^2-1\right)<0\)
<=>1-4m+4m2-4m2+4<0
<=>5-4m<0
<=>m>5/4
Đáp án A
Ta có 9 x + 9 − x − 2 = 2 1 + c os2nx ⇔ 3 x − 3 − x 2 = 4 c os 2 n x ⇔ 3 x − 3 − x = 2 cos n x a 3 x − 3 − x = − 2 cos n x b
Nhận xét x1 là nghiệm của P T a ⇒ − x 1 là nghiệm PT(b)
Giả sử 2PT a ; b có chung nghiệm x0 khi đó 3 x 0 − 3 − x 0 = 2 cos n x 0 3 − x 0 − 3 x 0 = 2 cos n x 0
⇔ 3 x 0 − 3 − x 0 = 2 cos n x 0 3 − x 0 − 3 x 0 = − 2 cos n x 0 ⇒ 3 x 0 = 3 − x 0 ⇒ x 0 = 0 thay vào PT a 3 0 − 3 0 = − 2 c os 0 ⇒ 0 = 1 vô lý
PT (a); (b) không có nghiệm chung. PT có 2.2018 = 4036 nghiệm.
Chọn B.
Phương pháp:
Đưa phương trình về dạng tích, giải phương trình tìm nghiệm và tìm điều kiện để bài toán thỏa.
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy
a) ĐK: x-1 khác 0 và x+1 khác 0
<=> x khác 1 và x khác -1
b) ĐK: x-2 khác 0
<=> x khác 2
Đáp án là D