Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. A có giá trị là số nguyên <=> n+5 chia hết cho n+9
<=>(n+9)-4 chia hết cho n+9
<=> 4 chia hết cho n+9 (vì n+9 chia hết cho n+9 )
<=> n+9 là ước của 4
=> n+9 = 1,-1 , 2 ,-2,4,-4
sau đó bn tự tìm n ha
b, B là số nguyên <=>3n-5 chia hết cho 3n-8
<=>(3n-8)+5 chia hết cho 3n-8
<=> 5 chia hết cho 3n-8
<=> 3n-8 là ước của 5
=> 3n-8 =1,-1,5,-5
tiếp bn lm ha
c, D là số nguyên <=> 5n+1 chia hết cho 5n+4
<=> (5n+4)-3 chia hết cho 5n+4
<=> 3 chia hết cho 5n +4
<=> 5n +4 là ước của 3
=> 5n+4 =1, -1,3,-3
tiếp theo bn vẫn tự lm ha
đoạn tiếp theo ở cả 3 câu , bn tìm n theo từng trường hợp rồi xem xem giá trị n nào thỏa mãn n là số nguyên là OK . chúc bn học giỏi
Gọi ƯCLN(3n + 1, 5n + 4) = d (d thuộc N*, d khác 1)
Ta có:
3n + 1 chia hết cho d => 5(3n + 1) chia hết cho d => 15n + 5 chia hết cho d
5n + 4 chia hết cho d => 3(5n + 4) chia hết cho d => 15n + 12 chia hết cho d
=> (15n + 12) - (15n + 5) chia hết cho d
=> 7 chia hết cho d => d \(\in\) Ư(7) = {-1;1;-7;7}
Mà d thuộc N*
=> d \(\in\){1;7}
Mà d khác 1
=> d = 7
vậy ƯCLN(3n + 1, 5n + 4) = 7
Gọi d là ƯCLN(3n+1,5n+4)
Ta có:3n+1 chia hết cho d=>5*(3n+1)chia hết cho d
5n+4 chia hết cho d=>3*(5n+4)chia hết cho d
=>3*(5n+4)- 5*(3n+1) chia hết cho d
hay 15n+12-15n+5 chia hết cho d
=>7 chia hết cho d
=>d thuộc Ư(7)
=>d={1,7}
Vì 3n+1 và 5n+4 ko phải là 2 số nguyên tố cùng nhau
Vậy ƯCLN(3n+1,5n+4)=7
Gọi ƯCLN(3n+1; 5n+4) là d. Ta có:
3n+1 chia hết cho d => 15n+5 chia hết cho d
5n+4 chia hết cho d => 15n+12 chia hết cho d
=> 15n+12-(15n+5) chia hết cho d
=> 7 chia hết cho d
=> d = 7
=> ƯCLN(3n+1; 5n+4) = 7
Gọi d là ƯCLN (3n+1,5n+4)
Ta có :3n+1 chia hết cho d suy ra 5.(3n+1) chia hết cho d
5n+4 chia hết cho d suy ra 3.(5n+4) chia hết cho d
suy ra 3.(5n+4)-5.(3n+1) chia hết cho d
hay 15n+12-15n+5 chia hết cho d
suy ra 7 chia hết cho d
suy ra d thuộc Ư(7)
suy ra d=(1,7)
Vì 3n+1 và 5n+4 ko phải là 2 số nguyên tố cx nhau
Vậy ƯCLN(3n+1 và 5n+4 )=7
Gọi d là ƯC của 3n+1 và 5n+4 => 3n+1 và 5n+4 cùng chia hết cho d
=> 5(3n+1)=15n+5 chia hết cho d và 3(5n+4)=15n+12 cũng chia hết cho d
=> (15n+12)-(15n+5)=7 cũng chia hết cho d => d thuộc {1;7}
=> d lớn nhất =7 nên ƯC của 3n+1 và 5n+4 là 7
Để A rút gọn được <=> 63 và 3n + 1 phải có ước chung Có 63 = 32.7 =>3n + 1 có ước là 3 hoặc 7 Vì 3n + 1 ⋮ / ⋮̸ 3 => 3n + 1 có ước là 7 => 3n + 1 = 7k (k ∈ ∈ N) => 3n = 7k - 1 => n = 7 k − 1 3 7k−13 => n = 6 k + k − 1 3 6k+k−13 => n = 2 k + k − 1 3 2k+k−13 Để n ∈ N ⇒ k − 1 3 ∈ N ⇒ k = 3 a + 1 ( a ∈ N ) n∈N⇒k−13∈N⇒k=3a+1(a∈N) ⇒ n = 7 ( 3 a + 1 ) − 1 3 = 21 a + 7 − 1 3 = 21 a + 6 3 = 21 a 3 + 6 3 = 7 a + 2 ⇒n=7(3a+1)−13=21a+7−13=21a+63=21a3+63=7a+2 Vậy n có dạng 7a+2 thì A rút gọn được b, Để A là số tự nhiên <=> 3n + 1 ∈ ∈ Ư(63)={1;3;7;9;21;63} Ta có bảng: 3n+1 1 3 7 9 21 63 n 0 2/3 2 8/3 20/3 62/3 Vậy n ∈ ∈ {0;2}
Đinh Tuấn Việt đọc kĩ lại đề đi. 2 số không nguyên tố cùng nhau.
2 số nguyên tố cùng nhau có ƯCLN là 1. Vậy ƯCLN(3n+1 ; 5n+4) = 1
Gọi d là ƯCLN(3n+1,5n+4)
Ta có:3n+1 chia hết cho d=>5*(3n+1)chia hết cho d
5n+4 chia hết cho d=>3*(5n+4)chia hết cho d
=>3*(5n+4)- 5*(3n+1) chia hết cho d
hay 15n+12-15n+5 chia hết cho d
=>7 chia hết cho d
=>d thuộc Ư(7)
=>d={1,7}
Vì 3n+1 và 5n+4 ko phải là 2 số nguyên tố cùng nhau
Vậy ƯCLN(3n+1,5n+4)=7
9 < 3n < 81
32 < 3n < 34
2 < n < 4
=> n = 3
26 < 5n < 125
25 < 5n < 125
52 < 5n < 53
Vậy n không tồn tại
16n < 1284
24n < (27)4
24n < 27.4
=> n < 7
n \(\in\){ 0 ,1,2,3,4,5,6,}