Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số hạng thứ 5 trong khai triển
Nhận xét. Học sinh có thể nhầm số hạng thứ 5 ứng với k=5 nên là
Hoặc tính nhầm dẫn đến chọn A, hoặc chọn C
Chọn B
Số hạng thứ \(k+1\) trong khai triển là :
\(t_{k+1}=C^k_{10}x^{10-k}\left(\dfrac{2}{x}\right)^k\)
Vậy \(t_5=C^4_{10}x^{10-4}.\left(\dfrac{2}{x}\right)^4=210.x^6.\dfrac{16}{x^4}=3360x^2\)
\(C_n^0+C_n^1+C_n^2=11\)
\(\Rightarrow1+n+\dfrac{n\left(n-1\right)}{2}=11\)
\(\Leftrightarrow n^2+n-20=0\Rightarrow\left[{}\begin{matrix}n=4\\n=-5\left(loại\right)\end{matrix}\right.\)
\(\left(x^3+\dfrac{1}{x^2}\right)^4\) có SHTQ: \(C_4^k.x^{3k}.x^{-2\left(4-k\right)}=C_4^k.x^{5k-8}\)
\(5k-8=7\Rightarrow k=3\)
Hệ số: \(C_4^3=4\)
Số hạng thứ trong khai triển là
t 5 = 3360 x 2