K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2015

Lê Thế Dũng mới lớp 6 mà đòi làm lớp 8

24 tháng 3 2017

ta có A = 1! + 2! + 3! + ... + 2015!

           = (...0)

NM
11 tháng 9 2021

ta có : \(13\text{ chia 4 dư 1 nên }13^{16}=4k+1\text{ nên}\)

\(3^{13^{14}}=3^{4k+1}=3.81^k\text{ mà 81 chia 16 dư 1 nên : }3.81^k\text{ chia 16 dư 3}\)

vậy \(3^{13^{16}}\text{ chia 16 dư 3}\)

b.\(20\text{ chia 3 dư 2 nên }20^{21}\text{ chia 3 dư 2 nên : }20^{21}=3k+2\)

\(\Rightarrow4^{20^{21}}=4^{3k+2}=16\times64^k\) 

mà \(64^k\text{ chia 21 dư 1 nên }4^{20^{21}}\text{ chia 21 dư 16}\)

13 tháng 5 2020

Giúp mình với nha ,thanks nhiều

14 tháng 5 2020

Từ giả thiết => \(a\equiv1\left(mod3\right)\), a=3k+1 (\(k\inℕ\)); b\(\equiv2\left(mod3\right)\), b=3q+2 \(\left(q\inℕ\right)\)

=> \(A=4^a+9^b+a+b=1=1+0+1+2\left(mod3\right)\)hay \(A\equiv4\left(mod3\right)\)(1)

Lại có \(4^a=4^{3k+1}=4\cdot64^k\equiv4\left(mod7\right)\)

\(9^b=9^{3q+2}\equiv2^{3q+2}\left(mod7\right)\Rightarrow9^b\equiv4\cdot8^q\equiv4\left(mod7\right)\)

Từ gt => \(a\equiv1\left(mod7\right),b\equiv1\left(mod7\right)\)

Dẫn đến \(A=4^a+9^b+a+b\equiv4+4+1+1\left(mod7\right)\)hay \(A\equiv10\left(mod7\right)\)

Từ (1) => \(A\equiv10\left(mod3\right)\)mà 3,7 nguyên tố cùng nhau nên \(A\equiv10\left(mod21\right)\)

=> A chia 21 dư 10