K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có n3\(\equiv\)0(mod n)

=> n3-1\(\equiv\)-1(mod n)

=>( n3-1)111\(\equiv\)-1(mod n)

Ta lại có 

n2\(\equiv\)0(mod n)

=> n2-1\(\equiv\)-1(mod n)

=>( n2-1)333\(\equiv\)-1(mod n)

vậy số dư khi chia (n3-1)111.( n2-1)333 cho n là 1

12 tháng 1 2020

\(\hept{\begin{cases}n^3-1\equiv-1\left(mod\text{ }n\right)\\n^2-1\equiv-1\left(mod\text{ }n\right)\end{cases}}\Rightarrow\left(n^3-1\right)^{111}.\left(n^2-1\right)^{333}\equiv\left(-1\right)^{111}.\left(-1\right)^{333}\equiv\left(-1\right).\left(-1\right)\equiv1\)\(\left(mod\text{ }n\right)\)

26 tháng 2 2020

ahihi

Bài 2: 

\(n^3-n^2+2n+7⋮n^2+1\)

\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n^2-64⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)

\(\Leftrightarrow n\in\left\{0;8;-8\right\}\)

7 tháng 11 2021

giúp mình với bucminh

 

 

\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)

hay \(n\in\left\{0;8;-8\right\}\)

kiến thức

hay dấu hiệu chia hết cho 7

là xong thui bạn