K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số số hạng của A là (2002-0):1+1=2001(số)

Nhóm 3 số hạng vào 1 nhóm thì có số nhóm là: 2001:3=667(nhóm)

Ta có

\(A=\left(1+2+2^2\right)+...+2^{2000}\left(1+2+2^2\right)\)

\(=7\left(1+...+2^{2000}\right)⋮7\)

24 tháng 8 2018

Ta có: A =  1   +   2   +   2 2   +   . . .   +   2 2009   +   2 2010

= 1 + 2 ( 1 + 2 +  2 2 ) + ... + 2 2008  ( 1 + 2 +  2 2  )

= 1 + 2 ( 1 + 2 + 4 ) + ... + 22008 ( 1 + 2 + 4 )

= 1 + 2 . 7 + ... +  2 2008  . 7 = 1 + 7 ( 2 + ... +  2 2008  )

Mà 7 ( 2 + ... +  2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.

5 tháng 2 2018

Ta có: A = 1 + 2 + 2 2  + 2 3 + ... + 2 2008  + 2 2009  + 2 2010

 

= 1 + 2 ( 1 + 2 + 22 ) + ... +  2 2008  ( 1 + 2 + 22 )

= 1 + 2 ( 1 + 2 + 4 ) + ... +  2 2008 ( 1 + 2 + 4 )

= 1 + 2 . 7 + ... + 2 2008 . 7 = 1 + 7 ( 2 + ... +  2 2008  )

Mà 7 ( 2 + ... +  2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.

2 tháng 8 2017

1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:  

\(BCNN\left(4;5;6\right)=60.\)

\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)

\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)

\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)

Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301 

2 tháng 8 2017

Số cần tìm là 301

3 tháng 1 2018

2, TA có:

x + y + xy = 40

=> x(y + 1) + y + 1 = 41

=> (x + 1)(y + 1) = 41

=> x + 1 thuộc Ư(41) = {1; 41}

Xét từng trường hợp rồi thay vào tìm y

3 tháng 1 2018

Có lẽ các bạn thấy hơi dài nhưng các bạn có thể làm 1 trong 3 câu cũng được. Nhưng đừng làm sai nhé! Hihihi...

2 tháng 11 2019

Bài 1 : Sai đề bài vì a chia 7 dư 9 trong khi theo quy tắc thì số dư < số chia mà 9 > 7 => sai đề.

 Nếu mà sửa lại đề lại đề bài thì có đề bài mới là: Một số tự nhiên a khi chia cho 7 dư 2 và chia 9 dư 7. Tìm số dư khi a : 63

thì đáp số sẽ là:               a : 63 dư 16.

2 tháng 11 2019

Cảm ơn

12 tháng 12 2016

\(A=1+2+2^2+...+2^{195}+2^{196}\)

\(A=\)\(\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{194}+2^{195}+2^{196}\right)+1\)

\(A=2.\left(1+2+4\right)+2^4.\left(1+2+4\right)+...+2^{194}.\left(1+2+4\right)+1\)

\(A=2.7+2^4.7+...+2^{194}.7+1\)

\(A=7.\left(2+2^4+...+2^{194}\right)+1\) 

\(\Rightarrow A\)chia cho 7 dư 1

18 tháng 10 2019

Cho mình hỏi A=1+2+2^3+2^4+....+2^19

Chứng minh A chia hết cho 3

                        A chia hết cho 5

                        A chia 7 dư bao nhiêu?

5 tháng 8 2021

giúp mik vs

1.

a chia hết cho 2 dư 1

=> a có dạng là 2n+1

b chia hết cho 2 dư 1

=> b có dang là 2m+1

=>a-b=2n+1-2m-1=2n-2m=2 (n-m) luôn chia hết cho 2