K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

19992016 có tận cùng là 1 nên 19992016 chia 5 dư 1

25 tháng 8 2016

Do a chia 5 dư 1 => a = 5.m + 1; b chia 5 dư 2 => b = 5.n + 2 (m;n thuộc N*)

Ta có: a.b = (5.m + 1).(5.n + 2)

= (5.m + 1).5.n + (5.m + 1).2

= 25.m.n + 5.n + 10.m + 2 chia 5 dư 2

=> a.b chia 5 dư 2

25 tháng 8 2016

bang 42 nha ban

12 tháng 11 2017

121 nha bạn

mk chc chan dung

12 tháng 11 2017

Gọi số này là a, a:29=k dư 5: a:31=m dư 28

=> 29k + 5 = 31m +28

=> 29k + 29m = 23 + 2m

\(\Rightarrow29k+29m⋮29\)

\(\Rightarrow23+2m⋮29\)

Mà số cần tìm là STN nhỏ nhất

\(\Rightarrow\left(23+2m\right)⋮29\)và là STN nhỏ nhất

=> 2m = 29-23

=> 2m = 6

=> m=3

=> 31m + 28 = 31.3 + 28 chia hết cho a

=> a = 31.3+28

=> a = 93 + 28

=> a = 121

Vậy, số cần tìm là 121

Gọi số phải tìm là a

Vì a chia cho 29 dư 5 nên a chia hết cho 24 

a chia cho 31 dư 28 nên a chia hết cho 3

Vì theo đầu bài a là số tự nhiên nhỏ nhất và a chia hết cho 24 và 3 nen a phải là BCNN của 24 và 3

BCNN = ( 24,3 ) = 24

Vậy số phải tìm là : 24

23 tháng 6 2016

Gọi số tự nhiên cần tìm là A

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )

                        Tương tự: A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

=>2q = 29(p – q) – 23 nhỏ nhất

=> p – q nhỏ nhất

Do đó p – q = 1 => 2q = 29 – 23 = 6

=> q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121 

1 tháng 7 2017

Gọi thương trong phét chia của P(x) cho x - 2 và x - 3 lần lượt là Q(x) , G(x) 

Ta có : P(x) = (x - 2).Q(x) + 5 với mọi x (1)

           P(x) = (x - 3).G(x) + 7 với mọi x (2)

Khi chia đa thức P(x) cho đa thức bậc hai (x - 2)(x - 3) thì số dư chỉ có thể có rạng R(x) = ax + b

Ta có : P(x) = (x - 2)(x - 3).h(x) + ax + b với mọi x (3)

Thay x = 2 vào (1) ta có : P(2) = 5 , thay vào 3 ta có : P(2) = 2a + b 

Nên 2a + b = 5 (4)

Thay x = 3 vào (2) ta có : P(3) =  7 , thay vào (3) ta có : P(3) = 3a + b 

Nên 3a + b = 7 (5)

Từ (4) và (5) => 3a + b - (2a + b) = 7 - 5 

=> a = 2 => b = 5 - 2.2 = 1

Vậy số dư khi chia P(x) cho (x - 2)(x - 3) là : 2x + 1 

AH
Akai Haruma
Giáo viên
31 tháng 3 2023

Lời giải:
Gọi đa thức dư khi lấy $f(x)$ chia cho $x^2+x-6$ là $ax+b$ với $a,b\in\mathbb{R}$, $Q(x)$ là đa thức thương.

Theo bài ra ta có:

$f(2)=6067$

$f(-3)=-4043$

$f(x)=(x^2+x-6)Q(x)+ax+b=(x-2)(x+3)Q(x)+ax+b$

Cho $x=2$ thì:

$f(2)=0.Q(2)+2a+b=2a+b$

$\Leftrightarrow 6067=2a+b(1)$

Cho $x=-3$ thì:

$f(-3)=0.Q(-3)-3a+b=-3a+b$

$\Leftrightarrow -4043=-3a+b(2)$

Từ $(1); (2)\Rightarrow a=2022; b=2023$

Vậy đa thức dư là $2022x+2023$