K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2017

\(a.\left(\frac{x+1}{2000}+1\right)+\left(\frac{x+2}{1999}+1\right)+\left(\frac{x+3}{1998}+1\right)+\left(\frac{x+4}{1997}+1\right)=0\)

\(=\frac{x+2001}{2000}+\frac{x+2001}{1999}+\frac{x+2001}{1998}+\frac{x+2001}{1997}=0\)

\(=\left(x+2001\right).\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\right)=0\)

\(=>x+2001=0\)

\(x=-2001\)

\(b.\left(\frac{x+1}{1999}-1\right)+\left(\frac{x+2}{2000}-1\right)+\left(\frac{x+3}{2001}-1\right)=\left(\frac{x+4}{2002}-1\right)+\left(\frac{x+5}{2003}-1\right)\)\(+\left(\frac{x+6}{2004}-1\right)\)

\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}=\frac{x+1998}{2002}+\frac{x+1998}{2003}+\frac{x+1998}{2004}\)

\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}-\frac{x+1998}{2002}-\frac{x+1998}{2003}-\frac{x+1998}{2004}=0\)

\(\left(x+1998\right).\left(\frac{1}{1999}+\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)

\(=>x+1998=0\)

\(x=-1998\)

6 tháng 4 2018

dễ quá!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 tháng 6 2015

Khi bỏ dấu ngoặc trong P(x) ta thu được đa thức P(x) có dạng 

P(x) = an.xn + an-1.xn-1 + an-2.xn-2 + ...+ a1.x + ao

Khi đó, tổng các hệ số của P(x) là an + an-1 + an-2 + ...+ a1 + ao 

mà P(1) =  an + an-1 + an-2 + ...+ a1 + ao 

=> Tổng các hệ số của P(x) bằng P(1) = (3 - 4.1 + 1)1998.(3 + 4.1 + 12)2000 = 0

10 tháng 6 2015

Tổng hệ số của đa thức trên sau khi bỏ dấu ngoặc chính là kết quả của đa thức khi x = 1

 Thế x = 1 vào đa thức trên ta được:

  \(\left(3-4.1+1^2\right)^{1998}.\left(3+4.1+1^2\right)^{2002}=0.8^{2002}=0\)