K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NM
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PT
1
PT
2
NT
1
AH
Akai Haruma
Giáo viên
28 tháng 10 2021
Lời giải:
\(S=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+...+(2^{2018}+2^{2019}+2^{2020})\)
\(=2+2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)\)
\(=2+(1+2+2^2)(2+2^5+...+2^{2018})=2+7(2+2^5+...+2^{2018})\)
Vậy $S$ chia $7$ dư $2$
NG
1
26 tháng 8 2021
\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)
\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)
NH
0
CT
0
bạn ơi dư 1 nha