Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab =(a+b)*3+7 => 10a+b=3a+3b+7 => 10a-3a-3b+b=7 => 7a-2b=7 => 7a=2b+7 ba =(a+b)*7+3 => 7a+7b+3=10b+a => 10b-7b-7a+a=3 => 3b-6a=3 => 3*(b-2a)=3 => b-2a=1 =>b=2a+1 từ (1)(2) => 7a=2(2a+1)+7=4a+9 => 7a-4a=3a=9 =>a=3 => b=2*3+1=7
1. A= 4p+3 = 17m+9= 19n+13
A+25 =4p+28= 17m+34 =19n+38
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19
vậy A+25 chia hết cho 4.17.19 =1292
A chia 1292 dư (1292-25) = 1267
2....
\(2^{2014}-1=\left(2^3\right)^{671}.2-1=8^{671}.2-1\)
Ta thấy \(8\overline{=}1\left(mod7\right)\Leftrightarrow8^{671}\overline{=}1\left(mod7\right)\Leftrightarrow8^{671}.2\overline{=}2\left(mod7\right)\)
\(\Rightarrow8^{671}.2-1\overline{=}1\left(mod7\right)\)
Do đó \(2^{2014}-1\) chia 7 dư 1