Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1+2018)+2018^2(1+2018)+...+2018^2016(1+2018)
=2019(1+2018^2+...+2018^2016) chia hết cho 2019
=>A chia 2019 dư 0
A = 3 + 32 + 33 + 34 + 35+ .... + 32018 + 32019
= 3 + (32 + 33 + 34 + 35+ .... + 32018 + 32019)
= 3 + [(32 + 33) + (34 + 35) + ... + (32018 + 32019)]
= 3 + [(32 + 33) + 32.(32 + 33) + ... + 32016.(32 + 33)]
= 3 + (36 + 32.36 + ... + 32016.36)
= 3 + 36.(1 + 32 + .... + 32016)
= 3 + 4.9.(1 + 32 + .... + 32016)
Vì 4.9.(1 + 32 + .... + 32016) \(⋮\)4
=> 4.9.(1 + 32 + .... + 32016) + 3 : 4 dư 3
=> A : 4 dư 3
Vậy số dư khi A chia 4 là 3
theo bài ra ta có:
A=3^1+3^2+3^3+3^4 .... +3^2018+3^2019
3A=3.(3^1+3^2+3^3+3^4 .... +3^2018+3^2019)
3A=3^2+3^3+3^4 .... +3^2018+3^2020
3A-A=(3^2+3^3+3^4 .... +3^2018+3^2020)
-(3^1+3^2+3^3+3^4 .... +3^2018+3^2019)
2A= 3^2020-3^1
=>2A=(...1)-(...3)
=>A=(...8)
...........
a) Ta có: \(2019\equiv3\left(mod9\right)\)
=> \(A=2019^{2018}\equiv3^{2018}\equiv3^{2.1009}\equiv9^{1009}\equiv0\left(mod9\right)\)
=> A chia 9 dư 0
b) Ta có: \(2020\equiv10\left(mod15\right)\)
=> \(B=2020^{2019}\equiv10^{2019}\equiv10\left(mod15\right)\)
=> B chia 15 dư 10.
a)xét 2A =2+2^2+2^3+.....+2^2019
-A=1+2+2^2+...+2^2018
A=(2^2019)-1 <2^2019
b)theo câu a ta có A+1=2^2019-1+1=2^2019=2^(x+1)
2019=x+1 =>x=2018