Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abcd chia hết cho ab.cd
100.ab+cd chia hết cho ab.cd
cd chia hết cho ab
Đặt cd=ab.k với k thuộc N và 1k9
Thay vào ta có
100.ab+k.ab chia hết cho k.ab.ab
100+k chia hết cho k.ab
100 chia hết cho k
Từ và k thuộc {1;2;4;5}
Xét k=1 thì thay vào thì 101 chia hết cho ab (loại)
Với k=2 thì thay vào 102 chia hết cho 2.ab 51 chia hết cho ab và lúc đó thì
ab=17 và cd=34(nhận) hoặc ab=51;cd=102 (loại)
Với k=4 thì ta có 104 chia hết cho 4.ab 26 chia hết cho ab nên
ab=13;cd=52(nhận) hoặc ab=26;cd=104(loại)
Với k=5 thì thay vào ta có 105 chia hết cho 5.ab 21 chia hết cho ab ab=21 và cd=105 vô lí
Vậy ta được 2 cặp số đó là 1734;1352
Câu hỏi của Ho Thi Ly - Toán lớp 6 - Học toán với OnlineMath
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)