Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong các phân số -3/4, 6/-7, -7/-8, -11/12, phân số nào nhỏ nhất là:
A:-3/4
B:6/-7
C:-7/-8
D:-11/12
Giải:
a) \(\dfrac{5^3.90.4^3}{25^2.3^2.2^{13}}\)
\(=\dfrac{5^3.5.3^2.2.\left(2^2\right)^3}{\left(5^2\right)^2.3^2.2^{13}}\)
\(=\dfrac{5^4.3^2.2.2^6}{5^4.3^2.2^{13}}\)
\(=\dfrac{5^4.3^2.2^7}{5^4.3^2.2^{13}}\)
\(=\dfrac{1}{2^6}=\dfrac{1}{64}\)
b) \(\dfrac{15^2.16^4-15^3.16^3}{12^2.20^3-20^2.12^3}\)
\(=\dfrac{15^2.16^3.16-15^2.16^3.15}{12^2.20^2.20-20^2.12^2.12}\)
\(=\dfrac{15^2.16^3.\left(16-15\right)}{12^2.20^2.\left(20-12\right)}\)
\(=\dfrac{\left(3.5\right)^2.\left(2^4\right)^3.1}{\left(3.2^2\right)^2.\left(2^2.5\right)^2.8}\)
\(=\dfrac{3^2.5^2.2^{12}}{3^2.\left(2^2\right)^2.\left(2^2\right)^2.5^2.2^3}\)
\(=\dfrac{3^2.5^2.2^{12}}{3^2.5^2.2^4.2^4.2^3}\)
\(=\dfrac{3^2.5^2.2^{12}}{3^2.5^2.2^{11}}\)
\(=2\)
c) \(\dfrac{2.3+4.6+14.21}{3.5+6.10+21.35}\)
\(=\dfrac{2.3+2.3.2.2+2.3.7.7}{3.5+3.5.2.2+3.5.7.7}\)
\(=\dfrac{2.3+2.3.4+2.3.49}{3.5+3.5.4+3.5.49}\)
\(=\dfrac{2.3.\left(1+4+49\right)}{3.5.\left(1+4+49\right)}\)
\(=\dfrac{2.3}{3.5}\)
\(=\dfrac{2}{5}\)
Chúc bạn học tốt!
\(a.\)
\(\dfrac{3}{10}:\left(-\dfrac{2}{3}\right)=\dfrac{3}{10}\cdot\dfrac{-3}{2}=-\dfrac{9}{20}\)
\(b.\)
\(\left(-\dfrac{7}{12}\right):\left(-\dfrac{5}{6}\right)=\left(-\dfrac{7}{12}\right)\cdot\left(-\dfrac{6}{5}\right)=\dfrac{\left(-7\right)\cdot\left(-6\right)}{12\cdot5}=\dfrac{7}{10}\)
\(c.\)
\(\left(-15\right):-\dfrac{9}{10}=\left(-15\right)\cdot-\dfrac{10}{9}=\dfrac{150}{9}=\dfrac{50}{3}\)
a) \(\dfrac{3}{10}:\dfrac{-2}{3}=\dfrac{3}{10}.\dfrac{-3}{2}=\dfrac{3.-3}{10.2}=\dfrac{-9}{20}\)
b) \(\dfrac{-7}{12}:\dfrac{-5}{6}=\dfrac{-7}{12}.\dfrac{-6}{5}=\dfrac{-7.-6}{12.5}=\dfrac{7}{10}\)
c)\(-15:\dfrac{-9}{10}=-15.\dfrac{-10}{9}=\dfrac{-15.-10}{9}=\dfrac{50}{3}\)
1. 8/23;-25;0
2.29/11;-1 và -3/2
3.3+1/2;-3+4/7
4.-12/7;19/8
đúng thì mik nha
a: Vì n+1 và n+2 là hai số tự nhiên liên tiếp
nên UCLN(n+1,n+2)=1
hay A là phân số tối giản
b: Gọi a là UCLN(n+4;2n+9)
\(\Leftrightarrow\left\{{}\begin{matrix}2n+9⋮a\\2n+8⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)
Vậy: B là phân số tối giản
c: Gọi b là UCLN(12n+1;30n+2)
\(\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮b\\60n+4⋮b\end{matrix}\right.\Leftrightarrow1⋮b\Leftrightarrow b=1\)
Vậy: C là phân số tối giản
\(a,11\dfrac{3}{4}-\left(6\dfrac{5}{6}-4\dfrac{1}{2}\right)+1\dfrac{2}{3}\)
\(=\dfrac{47}{4}-\left(\dfrac{41}{6}-\dfrac{9}{2}\right)+\dfrac{5}{3}\)
\(=\dfrac{47}{4}-\left(\dfrac{41}{6}-\dfrac{27}{6}\right)+\dfrac{5}{3}\)
\(=\dfrac{47}{4}-\dfrac{14}{6}+\dfrac{5}{3}\)
\(=\dfrac{47}{4}-\dfrac{7}{3}+\dfrac{5}{3}\)
\(=\dfrac{47}{4}-\left(\dfrac{7}{3}+\dfrac{5}{3}\right)\)
\(=\dfrac{47}{4}-\dfrac{12}{3}\)
\(=\dfrac{47}{4}-4\)
\(=\dfrac{47}{4}-\dfrac{16}{4}\)
\(=\dfrac{31}{4}\)
c) Ta có: \(4\dfrac{3}{7}:\left(\dfrac{7}{5}\cdot4\dfrac{3}{7}\right)\)
\(=\dfrac{31}{7}:\left(\dfrac{7}{5}\cdot\dfrac{31}{7}\right)\)
\(=\dfrac{31}{7}:\dfrac{31}{5}\)
\(=\dfrac{5}{7}\)
1.C
2.B
3.C
C
B
C