Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Các phân số trên có các mẫu số là 3, 7, 9
Vậy để a nhỏ nhất làm các tích trên là số nguyên thì a phải là BCNN(3,7,9) = 63
=> a=63
2) \(\frac{4}{5}< \frac{a}{b}< \frac{14}{15}\Rightarrow\frac{4b}{5}< a< \frac{14b}{15}\)
\(\Rightarrow\frac{32b}{5}< 8a< \frac{112b}{15}\Rightarrow\frac{62b}{5}< 8a+6b< \frac{202b}{15}\Rightarrow\frac{62}{5}b< 2012< \frac{202}{15}b\)
\(\Rightarrow149< b\le162\)Vì \(a=\frac{2012-6b}{8}\Rightarrow130< a\le139\)
Xét \(8a+6b=2012\Leftrightarrow4a+3b=1006\)Vì 4a và 1006 là các số chẵn nên 3b phải chẵn => b chẵn
Vì 4a chia hết cho 4 còn 1006 chia 4 dư 2 nên 3b chia 4 dư 2 => b chia 4 dư 2
Lúc này b chỉ có thể là 150, 154, 158, 162 --> thế vào tìm a
Vậy các phân số cần tìm là: \(\frac{139}{150},\frac{136}{154},\frac{133}{158},\frac{130}{162}\)
Ta có:
1/n + 3 = 1 / 1 + (n + 2)
2/n + 4 = 2 / 2 + (n + 2)
3/n + 5 = 3 / 3 + (n + 2)
....
2001/n + 2003 = 2001 / 2001 + (n + 2)
2002/n + 2004 = 2002 / 2002 + (n + 2)
Ta thấy các phân số trên đều có dạng a/a + (n + 2)
Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau
=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau
Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003
=> n = 2003 - 2 = 2001
Vậy n = 2001
nhớ k nha
Ta có:
1/n + 3 = 1 / 1 + (n + 2)
2/n + 4 = 2 / 2 + (n + 2)
3/n + 5 = 3 / 3 + (n + 2)
....
2001/n + 2003 = 2001 / 2001 + (n + 2)
2002/n + 2004 = 2002 / 2002 + (n + 2)
Ta thấy các phân số trên đều có dạng a/a + (n + 2)
Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau
=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau
Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003
=> n = 2003 - 2 = 2001
Vậy n = 2001
a,Xét \(a.\frac{-3}{25}\)
\(=\frac{-3a}{25}\)
Vì 3 là số nguyên tố
\(\Rightarrow a⋮25\Rightarrow a\in B\left(25\right)=\left(0;-25;25;50;-50;...;-25k;25k\right).Vớik\in Z\)
b,Xét \(a.\frac{4}{35}\)
\(=\frac{4a}{35}\)
Vì 4 không chia hết cho 35 => a chia hết cho 35
\(\Rightarrow a\in B\left(35\right)=\left(0;35;-35;...;35k;-35k\right).Với\forall k\in Z\)
ta có: - Khi a nhân với -3/25; 4/35 được mỗi tích là 1 số nguyên => a chia hết cho 25;35 => a thuộc BC(25;35) ={ ...;-350;-175;0;175;350;...}
p/s: mk cx ko chắc đâu!
1)\(\frac{2}{9}=0,\left(2\right)\)
\(\frac{3}{9}=0,\left(3\right)\)
2) a) 0,1234567
b) 10,2345
c) 12,034
1 >
\(\frac{2}{9}=0,222...=0,\left(2\right)\)
\(\frac{3}{9}=0,333...=0,\left(3\right)\)
2>
a) \(0,1234567\)
b) \(10,2345\)
c)\(10,234\)
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
chọn số thứ nhất là số a #0 và số thứ hai là số 0
như vậy ta có a^0 = 1 là sô nguyên dương nhỏ nhất
+)Gọi phân số cần tìm là:\(\frac{a}{b}\)(\(\frac{a}{b}>0;\frac{a}{b}\)nhỏ nhất)
+)Đề \(\frac{a}{b}\)nhỏ nhất thì a phải nhỏ nhất;b phải lớn nhất
+)Ta có:\(\frac{a}{b}.\frac{3}{4}=\frac{3a}{4b}\)
Để:\(\frac{3a}{4b}\)là số nguyên thì \(3⋮b;a⋮4\)(1)
+)Ta lại có:\(\frac{a}{b}.\frac{6}{5}=\frac{6a}{5b}\)
Để:\(\frac{6a}{5b}\)là số nguyên thì \(6⋮b;a⋮5\)(2)
+)Ta có:\(\frac{a}{b}.\frac{9}{10}=\frac{9a}{10b}\)
Để:\(\frac{9a}{10b}\)là số nguyên thì \(9⋮b;a⋮10\)(3)
+)Từ (1);(2) và (3)
=>\(a\in BC\left(4,5,10\right)\);\(b\inƯC\left(3,6,9\right)\)
Mà a nhỏ nhất;b lớn nhất
\(\Rightarrow a=BCNN\left(4,5,10\right);b=ƯCLN\left(3,6,9\right)\)
+) 4=22 5 10=2.5
\(\Rightarrow BCNN\left(4,5,10\right)=2^2.5=20\)
\(\Rightarrow\)a=20
\(b=ƯCLN\left(3,6,9\right)\)
+)3 6=2.3 9=32
\(\RightarrowƯCLN\left(3,6,9\right)=3\)
\(\Rightarrow b=3\)
Vậy phân số \(\frac{a}{b}=\frac{20}{3}\)thỏa mãn điều kiện phân số nguyên dương nhỏ nhất và khi nhân với \(\frac{3}{4};\frac{6}{5};\frac{9}{10}\)được kết quả là những số nguyên
Chúc bn học tốt