K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

\(P=\dfrac{9n+1}{3n+2}=\dfrac{9n+6-5}{3n+2}=3-\dfrac{5}{n+2}\)

Để \(P \in \mathbb{Z} \Rightarrow 3n+2 \in Ư(5) \Rightarrow 3n + 2 \in \left \{-5;-1;1;5 \right \}\)

$ 3n + 2 $ $ n $
$ - 5 $ $ -\frac{7}{3} $ (loại)
$ - 1 $ $ -1 $ (nhận)
$ 1 $ $ -\frac{1}{3} $ (loại)
$ 5 $ $ 1 $ (nhận)

Vậy \(n\in\left\{-1;1\right\}\)

9 tháng 1 2018

Để phân số \(P=\dfrac{9n+1}{3n+2}\in Z\) thì :

\(9n+1⋮3n+2\)

\(3n+2⋮3n+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}9n+1⋮3n+2\\9n+6⋮3n+2\end{matrix}\right.\)

\(\Leftrightarrow5⋮3n+2\)

\(\Leftrightarrow3n+2\inƯ\left(5\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3n+2=1\\3n+2=5\\3n+2=-1\\3n+2=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=-\dfrac{1}{3}\left(loại\right)\\n=1\left(tm\right)\\n=-1\left(tm\right)\\n=-\dfrac{7}{3}\left(loại\right)\end{matrix}\right.\)

Vậy ..

9 tháng 11 2017

Ta có : \(P=\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)

Để P là một số nguyên 

=> \(5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)

Ta có bảng sau 

\(n-1\)\(1\)\(5\)\(-5\)\(-1\)
\(n\)\(2\)\(6\)\(0\)\(-4\)

Vậy để P là số nguyên thì \(n\in\left(2;6;0;-4\right)\) 

25 tháng 11 2021

\(A=\dfrac{3\left(n-1\right)+5}{n-1}=3+\dfrac{5}{n-1}\in Z\\ \Leftrightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)

25 tháng 11 2021

thank

13 tháng 12 2020

Để \(P=\dfrac{3n+2}{n-1}\) là số nguyên thì:

\(3n+2⋮n-1\)

\(\Rightarrow3\left(n-1\right)+5⋮n-1\)

\(\Rightarrow5⋮n-1\)

=> \(n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Ta có các trường hợp sau:

\(\left[{}\begin{matrix}n-1=1\\n-1=-1\\n-1=5\\n-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=2\\n=0\\n=6\\n=-4\end{matrix}\right.\)

Vậy khi \(n\in\left\{2;0;6;-4\right\}\) thì \(P=\dfrac{3n+2}{n-2}\) là số nguyên.

 

21 tháng 12 2017

\(P=\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)

P nguyên khi \(\frac{5}{n-1}\)nguyên nghĩa là n-1 là ước của 5

Ư(5) = {-5; -1; 1; 5}

n-1-5-115
n-4026

Vậy với x E{-4; 0; 2; 6} thì P nguyên

21 tháng 12 2017

ta co : 3n+2 /n -1

=(3n - 3 + 5)/ (n-1)

=3(n-1) + 5 / (n-1)

=3(n-1)/ (n-1) + 5/(n-1)

=3 + 5/(n-1)

De 3n+2 chia het cho n-1

<=>n-1 thuộc Ư(5)={+-1;+-5}

=>n={2;0;6;-4}

21 tháng 12 2017

bạn an ơi vì sao (3n-3+5) khi bỏ dấu ngoặc ra lại bàng 3(n-1) +5 vậy?

31 tháng 8 2016

a.dk: n thuoc Z, n-4 chia het cho n-3

ket ban nha!

23 tháng 5 2018

a, \(A=\frac{n-4}{n-3}\) là phân số <=> \(n-3\ne0\)

                                                <=>  \(n\ne3\)

b, \(A=\frac{n-4}{n-3}\inℤ\Leftrightarrow n-4⋮n-3\)

\(\Rightarrow n-4⋮n-3\)

\(\Rightarrow n-3-1⋮n-3\)

     \(n-3⋮n-3\)

\(\Rightarrow1⋮n-3\)

\(\Rightarrow n-3\inƯ\left(1\right)\)

\(\Rightarrow n-3\in\left\{-1;1\right\}\)

\(\Rightarrow n-3\in\left\{2;4\right\}\)

c, \(A=\frac{n-4}{n-3}=\frac{n-3-1}{n-3}=\frac{n-3}{n-3}-\frac{1}{n-3}=1-\frac{1}{n-3}\)

để A đạt giá trị nỏ nhất thì \(\frac{1}{n-3}\) lớn nhất

=> n - 3 là số nguyên dương nhỏ nhất

=> n - 3 = 1

=> n = 4

27 tháng 6 2016

\(\frac{9n+3}{3n+1}=\frac{3\left(3n+1\right)}{3n+1}=3\)

Vậy với \(n\in Z\) thì  \(\frac{9n+3}{3n+1}\in Z\)

13 tháng 11 2015

a, \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
=>n-1 là ước của 5 => n=6,0,-4,2