K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

\(xy+yz+zx=xyz\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Do vai trò của x;y;z bình đẳng như nhau;giả sử:\(1< x\le y\le z\)

\(\Rightarrow\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}\)

Khi đó,ta có:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

\(\Rightarrow\frac{1}{x}+\frac{1}{x}+\frac{1}{x}=1\)

\(\Rightarrow\frac{3}{x}\ge1\)

\(\Rightarrow x=3;x=2\)

+) Với \(x=3\)\(\Rightarrow\frac{1}{3}+\frac{1}{y}+\frac{1}{z}=1\)

\(\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)

\(\Rightarrow\frac{1}{y}+\frac{1}{y}\ge\frac{2}{3}\)

\(\Rightarrow\frac{2}{y}\ge\frac{2}{3}\)

\(\Rightarrow y\le3\)

\(\Rightarrow y=2;y=3\)

+) với \(y=2\Rightarrow z=6\)

+) Với \(y=3\Rightarrow z=3\)

Với \(x=2\)

\(\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)

\(\Rightarrow\frac{2}{y}\ge\frac{1}{2}\)

\(\Rightarrow y=1;y=2;y=3;y=4\)

Đến đây rồi thử vào rồi tìm ra z.

Câu kết nhớ từ "HOÁN VỊ"

22 tháng 8 2018

Đề này sai rồi sao giải ?

22 tháng 8 2018

Mình mới tìm ra x và y chưa biết cách giải :

\(x^2-y^3=16=25-9\)

\(\Rightarrow\hept{\begin{cases}x=5\\y=3\end{cases}}\)

mk đang nghĩ....