Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(PT\Leftrightarrow xy\left(x+y-1\right)+\left(x+y-1\right)=1\)
\(\Leftrightarrow\left(x+y-1\right)\left(xy+1\right)=1\)
\(\Leftrightarrow\hept{\begin{cases}x+y-1=1\\xy+1=1\end{cases}hoac\hept{\begin{cases}x+y-1=-1\\xy+1=-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=2\\xy=0\end{cases}hoac\hept{\begin{cases}x+y=0\\xy=-2\end{cases}}}\)
Đến đây thì đơn giản rồi nhé :)))
Phương trình tương đương: \(\left(x+y\right)\left(x^2y^2+1\right)=xy+2\)
\(\Leftrightarrow x+y=\frac{xu+2}{x^2y^2+1}\)
\(\Rightarrow\left(xy+2\right)⋮\left(x^2y^2+1\right)\Rightarrow\left(x^2y^2-4\right)⋮\left(x^2y^2+1\right)\)
\(\Rightarrow\left(x^2y^2+1-5\right)⋮\left(x^2y^2+1\right)\Rightarrow5⋮\left(x^2y^2+1\right)\)
\(\Rightarrow x^2y^2+1\in\left\{1;5\right\}\Rightarrow x^2y^2\in\left\{0;4\right\}\Rightarrow xy\in\left\{-2;0;2\right\}\)
- \(xy=0\Rightarrow xy=2\Rightarrow\left(x;y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)
- \(xy-2\Rightarrow x+y=0\Rightarrow y=-x\Rightarrow x^2=2\left(ktm\right)\)
- \(xy=2\Rightarrow x+y=\frac{4}{5}\left(ktm\right)\)
Vậy: \(\left(x,y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)
Giải
5 = x2y2 + ( x-2) 2 + ( 2y-2)2 -2xy(x + 2y -4 )
= [ x.y - ( x + 2.y -4 ) ] 2 - 2 ( y - 1 ) ( x - 2 )
= ( xy - x - 2y + 4 )2 -4.( xy - x - 2y + 2 )
= A2 - 4 ( A - 2 )
<=> A2 - 4.A + 3 = 0
<=> \(\orbr{\begin{cases}xy-x-2y+4=3\\xy-x-2y+4=1\end{cases}}\)
Lưu ý : đặt : A = xy - x - 2y + 4
TH1 : xy - x - 2.y + 4 = 3
<=> xy - x - 2y + 1 = 0
<=> x.( y - 1 ) - 2.(y-1 ) = 1
<=> ( x - 2 ) ( y - 1 ) = 1
Ta có bảng :
x-2 | 1 | -1 |
y - 1 | 1 | -1 |
x | 3 | -1 |
y | 2 | 0 |
TH2 : xy - x - 2y + 4 = 1
<=> ( x- 2 ) . ( y -1 ) =-1
x-2 | -1 | 1 |
y - 1 | 1 | -1 |
x | -1 | 3 |
y | 2 | 0 |
Đuối ko giải nổi