K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2021

1, 2 và 3 :v

26 tháng 6 2021

1,2 th bạn =)) bài này dùng bernouli 1 phát ra luôn nha bạn

17 tháng 4 2022

x3 - 6xy + y3 = 8

<=> (x + y)3 - 3xy(x + y) - 6xy + 8 = 16

<=> (x + y + 2)(x2 + y2 - xy - 2x - 2y + 4) = 16

<=> \(\left(x+y+2\right)\left[\left(x-\dfrac{1}{2}y-1\right)^2+3\left(\dfrac{1}{2}y-1\right)^2\right]=16\)

Nhận thấy \(\left(x-\dfrac{1}{2}y-1\right)^2+3\left(\dfrac{1}{2}y-1\right)^2\ge0\)

=> x + y + 2 > 0

Khi đó 16 = 1.16 = 2.8 = 4.4

Lập bảng 

x + y + 2116428 
\(\left(x-\dfrac{1}{2}y-1\right)^2+3\left(\dfrac{1}{2}y-1\right)^2\)161482 
x      
y|     

 Đến đó bạn thế x qua y rồi làm tiếp nha

29 tháng 11 2020

số chính phương chia 4 dư 0 hoặc 1 mà 171 chia 4 dư 3

nên 3^x phải chia 4 dư 1 hay x chẵn 

x=2k thì: \(\left(3^k\right)^2+171=n^2\)

đơn giản nha

12 tháng 7 2022

3^x chia 4 chưa chắc dư 1🤨🤨🤨 đâu ví dụ 3^3=27 chia 4 dư 3 đấy chứ bạn nên suy nghĩ lại đi mà người ta bảo tìm x y cơ mà bạn đã tìm ra đâu

24 tháng 6 2021

Do VP là số lẻ

<=> 2x + 5y + 1 là số lẻ và \(2^{\left|x\right|}+y+x^2+x\) là số lẻ

<=> y chẵn và \(2^{\left|x\right|}+y+x\left(x+1\right)\) là số lẻ 

=> \(2^{\left|x\right|}\) là số lẻ (do y chẵn và x(x+1) chẵn)

=> x = 0

PT <=> \(\left(5y+1\right)\left(1+y\right)=105\)

<=> y = 4 (thử lại -> thỏa mãn)

KL: x = 0; y = 4

26 tháng 11 2021

sai r nha tại x là nguyên dương nên khác 0 chứ :)))

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=1+(3+m)=4+m\geq 0\Leftrightarrow m\geq -4$ (chứ không phải với mọi m như đề bạn nhé)!

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2\\ x_1x_2=-(m+3)\end{matrix}\right.\)

$x_1, x_2\neq 0\Leftrightarrow -(m+3)\neq 0\Leftrightarrow m\neq -3$

$\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{-8}{3}$

$\Leftrightarrow \frac{x_1^2-x_2^2}{x_1x_2}=\frac{-8}{3}$

$\Leftrightarrow \frac{-2(x_1-x_2)}{-(m+3)}=\frac{-8}{3}$
$\Leftrightarrow x_1-x_2=\frac{4}{3}(m+3)$

$\Rightarrow (x_1-x_2)^2=\frac{16}{9}(m+3)^2$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=\frac{16}{9}(m+3)^2$
$\Leftrightarrow 4+4(m+3)=\frac{16}{9}(m+3)^2$

$\Leftrightarrow m+3=3$ hoặc $m+3=\frac{-3}{4}$

$\Leftrightarrow m=0$ hoặc $m=\frac{-15}{4}$ (đều thỏa mãn)

17 tháng 11 2017

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin Wrecking Ball nhận xét

17 tháng 11 2017

Đỗ Đức Đạt cop trên Yahoo

AH
Akai Haruma
Giáo viên
3 tháng 4 2022

Lời giải:
Để pt có 2 nghiê pb thì:

$\Delta'=1-(m-3)>0\Leftrightarrow m< 4$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m-3\end{matrix}\right.\)

Khi đó:
\(x_1^2-2x_2+x_1x_2=-12\)

\(\Leftrightarrow x_1^2-2(2-x_1)+x_1(2-x_1)=-12\)

\(\Leftrightarrow x_1=-2\Leftrightarrow x_2=2-x_1=4\)

$m-3=x_1x_2=(-2).4=-8$

$\Leftrightarrow m=-5$ (tm)

9 tháng 5 2018

đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt 
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0

13 tháng 11 2019

Đặt: \(a=\frac{2}{1-\sqrt[3]{2}}\)

<=> \(\left(1-\sqrt[3]{2}\right)a=2\)

<=> \(a-2=\sqrt[3]{2}a\)

<=> \(\left(a-2\right)^3=\left(\sqrt[3]{2}a\right)^3\)

<=> \(a^3-6a^2+12a-8=2a^3\)

<=> \(a^3+6a^2-12a+8=0\)

Vậy phương trình ẩn x cần tìm là: \(x^3+6x^2-12x+8=0\)