Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+x+xy-2y^2-y=5\)
\(\Leftrightarrow2x^2+2x+2xy-4y^2-2y=10\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)+\left(x^2+2xy+y^2\right)\)\(-4y^2=10\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2+\left(x+y\right)^2-4y^2=10\)
\(\Leftrightarrow\left[\left(x+1\right)^2-4y^2\right]+\left[\left(x+y\right)^2-\left(y+1\right)^2\right]=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1\right)+\left(x-1\right)\left(x+2y+1\right)=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1+x-1\right)=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(2x-2y\right)=10\)
\(\Leftrightarrow2\left(x+2y+1\right)\left(x-y\right)=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x-y\right)=5\)
Vì \(x,y>0\left(x,y\inℤ\right)\Rightarrow x+2y+1\inℤ^+\)
Mà \(\left(x+2y+1\right)\left(x-y\right)=5\)
Do đó \(\left(x-y\right)\inℤ^+\)
Vì \(x+2y+1\ge x-y>0\)(vì \(x;y\in Z^+\))
\(\Rightarrow\left(x+2y+1\right)\left(x-y\right)=5.1\)
\(\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x=y+1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y+1+2y+1=5\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}3y+2=5\\x=y+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y=3\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)(thỏa mãn \(x,y\inℤ^+\))
Vậy phương trình có nghiệm nguyên dương \(\left(x;y\right)=\left(2;1\right)\)
Lưu ý : tớ ghi \(ℤ^+\)là chỉ số nguyên dương, ghi vào vở bạn nên ghi là "số nguyen dương" thôi.
Không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\).
Khi đó ta có: \(13=xyz+x^2+y^2+z^2\ge z^3+3z^2\)
suy ra \(z=1\).
\(12=xy+x^2+y^2\ge y^2+y^2+y^2=3y^2\)
\(\Rightarrow y=1\)hoặc \(y=2\).
Với \(y=1\): \(x^2+1+1+x=13\Leftrightarrow x^2+x-11=0\)không có nghiệm nguyên dương.
Với \(y=2\): \(x^2+2^2+1^2+1.2.x=13\Leftrightarrow x^2+2x-8=0\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)
\(\Rightarrow x=2\)thỏa mãn.
Vậy phương trình có nghiệm là \(\left(1,2,2\right)\)và các hoán vị.
Tham khảo thử đúng không nha mn
\(x^2+x-y^2=0\)
⇔ \(\left(x^2-y^2\right)+x=0\)
⇔ \(\left(x-y\right)\left(x+y\right)+x=0\)
⇒ \(x-y=0\) hoặc \(x+y=0\) hoặc \(x=0\)
⇒ \(x=y=0\)
x2+x+13=y2<=>4(x2+x+13)=4y2<=>4x2+4x+52=4y2<=>(4x2+4x+1)+51=4y2
<=>(2x+1)2+51=(2y)2<=>(2y)2-(2x+1)2=51<=>(2y-2x-1)(2y+2x+1)=51
đến đây giải kiểu pt ước số
\(x^2+3xy+y^2=x^2y^2^{^{\left(1\right)}}\)
\(\Leftrightarrow x^2+2xy+y^2=x^2y^2-xy\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy-1\right)\)
Vì xy(xy-1) là 2 số nguyên liên tiếp có tích là 1 số chính phương
=> xy=0 hoặc xy-1 =0
+) Nếu xy=0 thay vào (1) ta có
\(x^2+y^2=0\Leftrightarrow x=y=0\)
+)Nếu xy-1 =0 hay xy=1 ta có
\(x^2+y^2+3=1\Leftrightarrow x^2+y^2=-2\left(loại\right)\)
Vậy x=0 ; y=0
Đoạn số chính phương rồi suy ra xy mình chưa hiểu lắm,bạn gthich tí dc 0
\(x^2=y^2+2y+13\)
\(\Leftrightarrow x^2=\left(y^2+2y+1\right)+12\)
\(\Leftrightarrow x^2=\left(y+1\right)^2+12\)
\(\Leftrightarrow x^2-\left(y+1\right)^2=12\)
\(\Leftrightarrow\left(x-y-1\right).\left(x+y+1\right)=12\)
do x,y nguyên dương nên \(x-y-1;x+y+1\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
xy nguyên dương \(\Rightarrow x+y+1>x-y-1\)
từ đó ta có bẳng sau
vậy cặp giá trị (x;y) thỏa mãn là:x=4;y=1
Có:x^2=y^2+2y+13
=>x^2=(y^2+2y+1)+12
=>x^2=(y+1)^2+12
=>x^2-(y+1)^2=12
=>(x-y-1)(x+y+1)=12
vì x, y là các số nguyên dương
=>x-y-1<x+y+1
Xét các trường hợp
TH1:x-y-1=1 và x+y+1=12
=> x-y=2 và x+y=11
=>x=6.5 và y=4.5 (Loại vì x,y là các số nguyên dương)
TH2: x-y-1=2 và x+y+1=6
=>x-y=3 và x+y=5
=>x=4 và y=3 (Thỏa mãn)
TH3:x-y-1=3 và x+y+1=4
=>x-y=4 và x+y=3(Loại vì x-y<x+y)
Vậy x=4, y=3