Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(5,11\right)=1\) nên phương trình có vô số nghiệm.
Phương trình có một nghiệm là \(\left(3;1\right)\) nên nghiệm tổng quát của phương trình trên là
\(\left\{{}\begin{matrix}x=3+11t\\y=1+5t\end{matrix}\right.\), \(t \in \mathbb{Z}\).
b) \(\left(7,5\right)=1\) nên phương trình có vô số nghiệm.
Phương trình có một nghiệm là \(\left(4;23\right)\) nên nghiệm tổng quát của phương trình trên là
\(\left\{{}\begin{matrix}x=4+5t\\y=23-7t\end{matrix}\right.\), \(t \in \mathbb{Z}\).
c) Bạn đọc tự giải.
Tìm nghiệm nguyên của các phương trình sau:
a) 12x - 7y = 45 (1)
ta thấy 45 và 12 chia hết cho 3 nên y cũng phải chia hết cho 3
đặt y=3k, ta có:
12x-7.3k=45
<=> 4x-7k=15 (chia cả 2 vế cho 3)
<=> x= \(\frac{15+7k}{4}\)
<=> x= \(2k+4-\frac{k+1}{4}\)
đặt t=\(\frac{k+1}{4}\)(t \(\in\) Z) => k = 4t – 1
Do đó
x = 2(4t – 1) + 4 – t = 7t + 2
y = 3k = 3(4t - 1) = 12t – 3
Vậy nghiệm nguyên của phương trình được biểu thị bởi công thức:
\(\hept{\begin{cases}x=7t+2\\y=12t-3\end{cases}}\)
Câu b và c bạn làm tương tự
Thấy đúng thì k cho mình nhé
Ta có : 4x + 5y = 21
<=> 4x = 21 - 5y
<=> x = \(\frac{21-5y}{4}\)
Để x nguyên thì : \(\frac{21-5y}{4}\) nguyên
<=> 21 - 5y thuộc B(4) = {0;4;8;12;......}
<=> 5y thuộc {21;18;14;10;......}
<=> y = 5
Vậy y = 5 => 4x = 21 - 5.5 = -4 => x = -1
\(x=\frac{21-5y}{4}=\frac{20-4y+1-y}{4}=5-y+\frac{1-y}{4}\)
=> Để x nguyên thì 1-y = 4k (k thuộc Z) => y=1-4k
x=5-1+4k+k = 5k+4
Vậy các cặp (x,y) thuộc Z thỏa mãn là (5k+4; 1-4k) với k thuộc Z
\(a)\)
\(x^2=2y^2-8y+3\)
\(\rightarrow x^2=2\left(y^2+4y+4\right)-5\)
\(\rightarrow x^2+5=2\left(y+2\right)^2\)
\(\text{Ta có:}\)\(2\left(y+2\right)⋮2\)
\(\rightarrow\text{Một số chính phương chia 5 có số dư là: 0; 1; 4}\)
\(\rightarrow2n^2⋮5\)\(\text{có số dư là: 0; 2; 3 }\)
\(\text{Ta có:}x^2+5⋮5\left(dư5\right)\)
\(\rightarrow\text{Phương trình không có nghiệm nguyên}\)
\(b)\)
\(x^5-5x^3+4x=24\left(5y+1\right)\)
\(\rightarrow x\left(x+1\right)\left(x-1\right)\left(x+2\right)\left(x-2\right)=120y+24\)
\(\text{VT là tích của 5 số nguyện liên tiếp}⋮5\)
\(\text{VP không chia hết cho 5}\)
\(\rightarrow\text{Phương trình không có nghiệm nguyên }\)