K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

\(PT\Leftrightarrow\left(x-\sqrt{2}y\right)\left(x+\sqrt{2}y\right)=1=1\cdot1=\left(-1\right)\left(-1\right)\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\sqrt{2}y=1\\x+\sqrt{2}y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-\sqrt{2}y=-1\\x+\sqrt{2}y=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left(x;y\right)=\left\{\left(1;0\right);\left(-1;0\right)\right\}\)

16 tháng 10 2021

nhầm rồi =((

15 tháng 8 2019

x 2 − 2 y ( x − y ) = 2 ( x + 1 ) < = > x 2 − 2 ( y + 1 ) x + 2 ( y 2 − 1 ) = 0 ( 1 )

Để phương trình (1) có nghiệm nguyên x thì D' theo y phải là số chính phương

+ Nếu  Δ ' = 4 = > ( y − 1 ) 2 = 0 < = > y = 1  thay vào phương trình (1) ta có :

x 2 − 4 x = 0 < = > x ( 2 − 4 ) < = > x = 0 x − 4

+ Nếu  Δ ' = 1 = > ( y − 1 ) 2 = 3 < = > y ∉ Z .

+ Nếu  Δ ' = 0 = > ( y − 1 ) 2 = 4 < = > y = 3 y = − 1

+ Vi y = 3 thay vào phương trình (1) ta có:   x 2 − 8 x + 16 = 0 < = > ( x − 4 ) 2 = 0 < = > x = 4

+ Vi y = -1 thay vào phương trình (1) ta có:  x 2 = 0 < = > x = 0

Vậy phương trình (1) có 4 nghiệm nguyên  ( x ; y ) ∈ {(0;1);(4;1);(4;3);(0;-1)}

27 tháng 11 2021

\(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)

\(\Rightarrow\dfrac{1+x\sqrt{x^2+1}}{\sqrt{x^2+1}+x}=1\)

\(\Rightarrow1+x\sqrt{x^2+1}=\sqrt{x^2+1}+x\)

\(\Rightarrow1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x=0\)

\(\Rightarrow-\left(x-1\right)+\left(x-1\right)\sqrt{x^2+1}=0\)

\(\Rightarrow\left(x-1\right)\left(\sqrt{x^2+1}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{x^2+1}-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\\sqrt{x^2+1}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

 

27 tháng 11 2021

\(a,2y^2-x+2xy=y+4\\ \Leftrightarrow2y\left(x+y\right)-\left(x+y\right)=4\\ \Leftrightarrow\left(2y-1\right)\left(x+y\right)=4=4\cdot1=\left(-4\right)\left(-1\right)=\left(-2\right)\left(-2\right)=2\cdot2\)

Vì \(x,y\in Z\Leftrightarrow2y-1\) lẻ 

\(\left\{{}\begin{matrix}2y-1=1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=-1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)

Vậy PT có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(4;0\right)\right\}\)

28 tháng 10 2016

chiu roi

ban oi

tk nhe

29 tháng 5 2020

\(5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)=-75y^2+210y+49\)

Để PT có nghiệm nguyên thì \(\Delta\ge0\)

từ đó tìm được các giá trị nguyên của y, rồi tìm được x

24 tháng 7 2021

\(x^2-4x+2y-xy+9=0\)

\(\Leftrightarrow x^2-4x+4+2y-xy+5=0\)

\(\Leftrightarrow\left(x-2\right)^2-\left(x-2\right)y+5=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2-y\right)=-5\)

\(\left[{}\begin{matrix}\left(x-2\right)\left(x-2-y\right)=-5\cdot1\left(1\right)\\\left(x-2\right)\left(x-2-y\right)=-1\cdot5\left(2\right)\end{matrix}\right.\)

Vì đề kêu tìm nghiệm nguyên nên ta có

Th1:\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-5\\x-2-y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=1\\x-2-y=-5\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\end{matrix}\right.\)

Th2:\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-1\\x-2-y=5\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=5\\x-2-y=-1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=7\\y=6\end{matrix}\right.\end{matrix}\right.\)

Vậy .....

10 tháng 8 2020

pt <=> \(x^2\left(y^2-1\right)+x\left(-y\right)-2y^2=0\)

Xét: \(\Delta=y^2-4\left(y^2-1\right).-2y^2=y^2+8y^2\left(y^2-1\right)\)

\(\Delta=8y^4-7y^2\)

Do để pt có nghiệm => \(\Delta\)là 1 SCP

=> \(8y^4-7y^2\)là 1 SCP

=> \(8z^2-7z\)là 1 SCP vs \(z=y^2\)

Đến đây dễ dàng tìm ra z => Ra y => Ra x