Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x = 0 thì \(y=\pm1\)
Xét \(x\ne0\). Từ phương trình, ta có: \(4y^2=\left(2x^2+x\right)^2+3x^2+4x+4>\left(2x^2+x\right)^2\)
Hơn nữa: \(4y^2=\left(2x^2+x+2\right)^2-5x^2< \left(2x^2+x+2\right)^2\)
Suy ra: \(\left(2x^2+x\right)^2< 4y^2< \left(2x^2+x+2\right)^2\)
Do đó, ta có: \(4y^2=\left(2x^2+x+1\right)^2\) hay \(3\left(1+x+x^2+x^3+x^4\right)=\left(2x^2+x+1\right)^2\)
giải phương trình này, ta được: x = -1 haowcj x = 3
Từ đó => Nghiệm của phương trình là: (0;1);(0;-1);(-1;1);(-1;-1);(3;11);(3;-11)
\(a)\)
\(\frac{1}{x+1}-\frac{x-1}{x}=\frac{3x+1}{x\left(x+1\right)}\)
\(\Leftrightarrow x-x^2+1=3x+1\)
\(\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(b)\)
\(\frac{\left(x+2\right)^2}{2x-3}-\frac{1}{1}=\frac{x^2+10}{2x-3}\)
\(\Leftrightarrow x^2+4x+4-2x-3=x^2+10\)
\(\Leftrightarrow x^2+2x+1=x^2+10\)
\(\Leftrightarrow2x-9=0\)
\(\Leftrightarrow2x=9\)
\(\Leftrightarrow x=\frac{2}{9}\)
Bạn cần viết đề bằng công thức toán ( biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
\(x^2+3xy+y^2=x^2y^2^{^{\left(1\right)}}\)
\(\Leftrightarrow x^2+2xy+y^2=x^2y^2-xy\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy-1\right)\)
Vì xy(xy-1) là 2 số nguyên liên tiếp có tích là 1 số chính phương
=> xy=0 hoặc xy-1 =0
+) Nếu xy=0 thay vào (1) ta có
\(x^2+y^2=0\Leftrightarrow x=y=0\)
+)Nếu xy-1 =0 hay xy=1 ta có
\(x^2+y^2+3=1\Leftrightarrow x^2+y^2=-2\left(loại\right)\)
Vậy x=0 ; y=0
Đoạn số chính phương rồi suy ra xy mình chưa hiểu lắm,bạn gthich tí dc 0
\(x^2-y^2=5\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=5\)
=> x-y và x+y \(\inƯ\left(5\right)=\left\{\pm1,\pm5\right\}\)
Ta có bảng sau:
x-y | -5 | -1 | 1 | 5 |
x+y | -1 | -5 | 5 | 1 |
x | -3 | -3 | 3 | 3 |
y | 2 | -2 | 2 | -2 |
Vậy (x,y)=(-3,2),(-3,-2),(3,2),(3,-2)
xin lỗi nhưng mình ghi nhầm đề:
Tìm nghiệm nguyên của PT; \(x^2-2y^2\text{=}5\)
\(y^2=x\left(x+1\right)\left(x+7\right)\left(x+8\right)\)
\(=\left(x^2+8x\right)\left(x^2+8x+7\right)\)
\(\Rightarrow4y^2=\left(2x^2+16x\right)\left(2x^2+16x+14\right)\)
\(=\left(2x^2+16x+7-7\right)\left(2x^2+16x+7+7\right)\)
\(=\left(2x^2+16x+7\right)^2-49\)
\(\Leftrightarrow\left(2x^2+16x+7\right)^2-4y^2=49\)
\(\Leftrightarrow\left(2x^2+16x+7-2y\right)\left(2x^2+16x+7+2y\right)=49=1.49=7.7\)
Xét các trường hợp và thu được các nghiệm là: \(\left(-3,0\right),\left(0,0\right)\).