K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2021

a) Ta có: \(x^2+2y^2+2z^2-2xy-2yz-2z=4\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2z+1\right)=5\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-1\right)^2=5\)

Mà \(5=0^2+1^2+2^2\) nên ta có dễ dàng xét được các TH

Làm tiếp nhé!

18 tháng 1 2021

b) Ta có: \(x^2+13y^2-6xy=100\)

\(\Leftrightarrow\left(x^2-6xy+9y^2\right)+4y^2=100\)

\(\Leftrightarrow\left(x-3y\right)^2=100-4y^2\)

Mà \(\hept{\begin{cases}\left(x-3y\right)^2\ge0\\100-4y^2\le100\end{cases}}\Rightarrow0\le100-4y^2\le100\)

\(\Rightarrow y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5\right\}\)

Ta có các TH sau:

Nếu \(y=0\Rightarrow x^2=100\Rightarrow x=\pm10\)

Nếu \(y=\pm3\Leftrightarrow\orbr{\begin{cases}\left(x-9\right)^2=64\\\left(x+9\right)^2=64\end{cases}}\Rightarrow x\in\left\{17;1;-17;-1\right\}\)

... Tự làm tiếp nhé

25 tháng 7 2020

Ta có:

\(\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(z^2+2zx+x^2\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)+z^2=0\)\(\Leftrightarrow\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2+\left(x+5\right)^2+\left(y+3\right)^2+z^2=0\)

Không tồn tại x,y,z thỏa mãn đề bài

2 tháng 12 2021

1. Đ

2.Đ