Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
vì \(a+b\ge1\Leftrightarrow b\ge1-a\)
khi đó \(A\ge\dfrac{8a^2+1-a}{4a}+\left(1-a\right)^2=2a+\dfrac{1}{4a}-\dfrac{1}{4}+1-2a+a^2\)
\(=a^2+\dfrac{1}{4a}+\dfrac{3}{4}=a^2+\dfrac{1}{8a}+\dfrac{1}{8a}+\dfrac{3}{4}\)
Áp dụng BĐT cauchy:\(a^2+\dfrac{1}{8a}+\dfrac{1}{8a}\ge3\sqrt[3]{a^2.\dfrac{1}{8a}.\dfrac{1}{8a}}=\dfrac{3}{4}\)
\(\Rightarrow A\ge\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{3}{2}\)
Dấu = xảy ra khi \(a^2=\dfrac{1}{8a}\Leftrightarrow a=\dfrac{1}{2}\Rightarrow b=\dfrac{1}{2}\)
Vậy AMIN=\(\dfrac{3}{2}\)khi \(a=b=\dfrac{1}{2}\)
thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
\(1,\dfrac{1}{1+x}=1-\dfrac{1}{1+y}+1-\dfrac{1}{1+z}=\dfrac{y}{1+y}+\dfrac{z}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Cmtt: \(\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(1+x\right)\left(1+z\right)}};\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân VTV
\(\Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8\sqrt{\dfrac{x^2y^2z^2}{\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2}}\\ \Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\dfrac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\\ \Leftrightarrow8xyz\le1\Leftrightarrow xyz\le\dfrac{1}{8}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{2}\)
\(2,\\ a,2x^2+y^2-2xy=1\\ \Leftrightarrow\left(x-y\right)^2+x^2=1\\ \Leftrightarrow\left(x-y\right)^2=1-x^2\ge0\\ \Leftrightarrow x^2\le1\Leftrightarrow\sqrt{x^2}\le1\Leftrightarrow\left|x\right|\le1\)