Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-6=0\)
\(\Leftrightarrow x^2=6\)
\(\Leftrightarrow x=\pm\sqrt{6}\)
Mà \(\pm\sqrt{6}\)là số vô tỷ
Vậy \(x^2-6=0\)không có nghiệm hữu tỉ
\(x^2+xy+y^2=2x+y\)
đk có nghiệm của Pt:
\(x^2+x\left(y-2\right)+y^2-y=0\left(1\right)\)
để tồn tại x thì Pt 1 phải có nghiệm
\(\left(y-2\right)^2-4\left(y^2-y\right)\)
\(-3y^2+4\left(vl\right)\)
Vậy Pt kia k có nghiệm nguyên.
đúng là thanh niên trong đội tuyển toán yêu dấu của cô chủ nhiệm
Theo bài ra ta có: \(x^2-5=0\Rightarrow x^2=5\Rightarrow x=\sqrt{5}\)
Vì \(\sqrt{5}\)là số thực nên phương trình đã cho không có nghiệm hữu tỉ
\(x^2-5=0\)
\(\Rightarrow x^2=5\)
\(\Rightarrow x=\pm\sqrt{5}\)
kết quả đã cho là số vô tỉ vậy .....
Câu 1: Cặp số là nghiệm phương của 2x + 3y = 7 là:
C. ( 2;1 )
Câu 2: Phương trình x + 2y = 3, Cặp số là nghiệm phương của phương trình đã cho là cặp số : ( 1;1)
Bài 2:
a: Ta có: \(2^{x+1}\cdot3^y=12^x\)
\(\Leftrightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
A=\(2x^2+x-6=0\)
<=>\(2x^2+4x-3x-6=0\)
<=>\(2x\left(x+2\right)-3\left(x+2\right)=0\)
<=>\(\left(x+2\right)\left(2x-3\right)\)=0
Suy ra x+2=0 Hoặc 2x-3=0
<=>x=\(-2\)Hoặc <=>x=\(\frac{3}{2}\)
2x2+x-6=0 (x\(\in\)Q)
<=>2x2+4x-3x-6=0
<=>2x(x+2)-3(x+2)=0
<=>(2x-3)(x+2)=0
<=>\(\orbr{\begin{cases}2x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\left(ktm\right)\\x=-2\left(tm\right)\end{cases}}\)
vậy x=-2