Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\left(x\right)=5x^2-5x+3=5\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0,\forall x\)
⇒ pt vô nghiệm
\(B\left(x\right)=4x^2-3x+7=4\left(x-\dfrac{3}{8}\right)^2+\dfrac{103}{16}>0,\forall x\)
⇒ pt vô nghiệm
\(C\left(x\right)=5x^2-11x+6=\left(5x^2-5x\right)-\left(6x-6\right)\)
\(=5x\left(x-1\right)-6\left(x-1\right)=\left(5x-6\right)\left(x-1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=1\end{matrix}\right.\)
Vậy ...
a, Ta có :
\(A\left(x\right)=5x^2-5x+1+2=0\Leftrightarrow5x^2-6x+3=0\)
\(\Leftrightarrow5\left(x^2-\dfrac{2.3}{5}+\dfrac{9}{25}-\dfrac{9}{25}\right)+3=0\Leftrightarrow5\left(x-\dfrac{3}{5}\right)^2+\dfrac{6}{5}=0\)( vô lí )
vậy đa thức ko có nghiệm
b, \(B\left(x\right)=4x^2-3x+7=0\Leftrightarrow4\left(x^2-\dfrac{2.3}{8}+\dfrac{9}{64}-\dfrac{9}{64}\right)+7=0\)
\(\Leftrightarrow4\left(x-\dfrac{3}{8}\right)^2+\dfrac{103}{64}=0\)( vô lí )
Vậy đa thức ko có nghiệm
c, \(C\left(x\right)=5x^2-11x+6=0\Leftrightarrow5x^2-6x-5x+6=0\)
\(\Leftrightarrow5x\left(x-1\right)-6\left(x-1\right)=0\Leftrightarrow\left(5x-6\right)\left(x-1\right)=0\Leftrightarrow x=\dfrac{6}{5};x=1\)
Ta có: |x+1| ;|x+3| ;|x+5|>=0
=> |x+1|+|x+3|+|x+5|>=0
=> 7x>=0
=> x+1+x+3+x+5=7x
3x+8=7x
4x=8
x=2
|x + 1| + |x + 3| + |x + 5| = 7x
có |x + 1| > 0; |x + 3| > 0; |x + 5| > 0
=> 7x > 0
=> x > 0
=> x + 1 + x + 3 + x + 5 = 7x
=> 3x + 9 = 7x
=> 3x - 7x = - 9
=> -4x = -9
=> x = 9/4
a) ta có để h(x)=3.|x-2|+5 đạt GTNN
=>3.|x-2| nhỏ nhất
mà 3.|x-2| không âm
=>3.|x-2|>hoặc = 0 mà để 3.|x-2|nhỏ nhất
=>3.|x-2|=0
=>x=2
thay h(2)=3.|2-2|+5=5
vậy GTNN của h(x)=1/2
b) để 1/(x^2-2x+2) đạt GTLN
=> x^2-2x+2 nhỏ nhất
=> x^2-2x nhỏ nhất mà x^2-2x ko âm
=> x^2-2x>hoặc =0
=> x^2-2x=0
=>x=0
thay 1/(1^2-2.1+2)=1/2
\(\left(-x\right)^2+6x=0\)
\(x\left(x+6\right)=0\)
- \(x=0\)
- \(x+6=0\Rightarrow x=-6\)
cách giải như sau
x.(1/3-0,5)=0,75
x.(-1/6)=0,75
x=0,75:(-1,6)
x=-9/2
a) \(4x+9=0\Leftrightarrow4x=-9\Leftrightarrow x=-\dfrac{9}{4}\)
b) \(-5x+6=0\Leftrightarrow5x=6\Leftrightarrow x=\dfrac{6}{5}\)
c) \(x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
d) \(x^2-9=0\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
e) \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
f) \(x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
g) \(\left(x-4\right)\left(x^2+1\right)=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)( do \(x^2+1\ge1>0\))
h) \(3x^2-4x=0\Leftrightarrow x\left(3x-4\right)=0\Leftrightarrow\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
i) \(x^2+9=0\Leftrightarrow x^2=-9\)( vô lý do \(x^2\ge0>-9\))
Vậy \(x\in\left\{\varnothing\right\}\)
f(2015)=a(2015)^5+b(2015)^3+2014.2015 +1 mà f(2015)=2 => a(2015)^5+b(2015)^3+2014.2015+1=2 =>a(2015)^5+b(2015)^3+2014.2015 =1
Xét f(-2015)=a(-2015)^5+b(-2015)^3+2014.(-2015) +1=-a(2015)^5-b(2015)^3-2014.2015 +1 = -(a(2015)^5+b(2015)^3+2014.2015)+1 =-1+1=0
bài dễ
ta có f(2015)=a.2015^5+b.2015^3+2014.2015+1
f(-2015)=a.(-2015)^5+b.(-2015)^3+2014.(-2015)+1
=>f(2015)+f(-2015)=2
(=)2+f(-2015)+2
(=) f(-2015)=0
7x2 - 15x + 8 = 0
\(\Leftrightarrow\)7x2 - 7x - 8x +8 = 0
\(\Leftrightarrow\)7x.(x - 1) - 8.(x - 1) = 0
\(\Leftrightarrow\)(7x - 8)(x - 1) = 0
\(\Leftrightarrow\)7x - 8 = 0 và x - 1 = 0
\(\Leftrightarrow\) x = 8/7 và x= 1
x2 - 5x - 6 = 0
<=>x2 - x + 6x - 6 = 0
<=>x(x-1) + 6(x-1) = 0
<=> (x+6)(x-1) = 0
<=> x+6 = 0 và x-1 = 0
<=> x = -6, x= 1